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Abstract   Aberration-corrected scanning transmission electron microscopes 
(STEMs) are versatile instruments that can perform many types of investigations.  
The main use of such microscopes has so far been in direct imaging and analysis, 
but they are equally well suited to performing diffraction studies and combined 
diffraction+imaging experiments.  The various optical modes needed for such op-
erating modes are reviewed.  They include producing electron beams with angular 
spreads as narrow as a few µrad, and conical precession scans with scan angles > 
50 mrad. 

Electron diffraction in a STEM 
Crewe’s original STEM [1,2] had no lenses after the objective lens.  The in-

formation projected onto its detectors was therefore always a diffraction pattern.  
However, this STEM also had had no 2-dimensional detector – it detected its vari-
ous signals on scintillator+photomultiplier type detectors, and the richness of the 
diffraction information available in a STEM was not fully appreciated at the time. 

This situation changed fundamentally when John Cowley, the author of Dif-
fraction Physics [3], acquired a Vacuum Generators (VG) HB5 STEM, built a 
camera detector for it, and started to explore the wide variety of imaging and dif-
fraction modes available in a STEM [4].  The results of these pioneering studies 
were presented in many papers by Cowley and coworkers and also in Spence’s 
and Zuo’s comprehensive book [5]. 

Modern STEMs are able to take these studies further, because they have several 
features that Cowley’s STEM lacked:  

a) symmetric or nearly-symmetric condenser-objective lens.  This kind of 
lens can transform a nearly parallel beam of electrons into a convergent 
beam that illuminates the sample, and then transform the outgoing elec-
tron beam, widely dispersed in angle, back into a nearly parallel beam.  It 
allows scattering angles of up to about 200 mrad to be transferred onto 
detectors.  It also allows the STEM to operate as a parallel-beam instru-
ment. 
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b) Post-specimen lenses.  These serve to magnify the parallelized exiting 
beam as needed on the detectors, i.e. to give an adjustable camera length, 
typically from a few mm to several m. 

c) Aberration correctors.  In a STEM, aberration correctors primarily serve 
to produce smaller electron probes, by correcting aberrations to higher 
angles and thus making it possible to use more convergent (and therefore 
smaller) illuminating probes.  The correctors introduce many new lenses 
into the column, and these lenses can also be used for setting up various 
diffraction experiments. 

 

Convergent and nearly parallel electron probes 
Magnetic electron lenses have one great advantage over glass lenses used for 

light: their focal length can be changed very easily, simply by adjusting the current 
flowing through their coils.  This gives electron-optical columns a very large de-
gree of flexibility.  Fig. 1 illustrates how an electron beam can be made more or 
less convergent simply by adjusting the strength of two electron lenses, L1 and 
L2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Changing probe size and convergence by adjusting two electron lenses.   

The figure shows schematically a case of 1:1 imaging of a crossover (a), 2x re-
duction (b) and 2x magnification (c).  In practice, a pair of lenses with adjustable 
focal lengths can typically cover 10:1 reduction to 1:10 magnification, and strong 
lenses (with short minimum focal length) can cover 50:1 to 1:50.  To cover the 
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range continuously, the lenses have to be individually alignable, as is done for in-
stance for every lens in the Nion microscope column [6]. 

When the output crossover is made smaller, as in diagram (b), the illumination 
grows more convergent (as shown by the axial ray).  The image of the beam-
defining aperture then moves towards the first crossover and becomes larger.  The 
total electron flux remains the same, which means that the final crossover be-
comes more intense (more concentrated).   

When the output crossover is made larger, as in diagram (c), the illumination 
grows less convergent (as shown by the axial ray), and the image of the beam-
defining aperture becomes smaller. The total electron flux again remains the same, 
which means that the crossover appears fainter (more spread out), as shown sche-
matically in the figure.   

The diagrams are very simple, but they illustrate several important points.  
First, in order to understand an optical system, its first-order (Gaussian) trajecto-
ries must be precisely quantified.  This is because all the other properties of the 
system, such as its higher order aberrations, are crucially dependent on the first 
order trajectories.  In a complicated optical system, such as one involving aberra-
tion correctors, the widths of the electron beam in the different optical elements 
must typically be known with an accuracy better than 0.1%.    

Second, a crossover is never a point-like object.  Each new crossover is simply 
an image of the previous crossover, all the way through the optical column.  The 
first crossover is typically the virtual crossover situated behind the actual electron 
source, from which the electrons appear to emanate.   

Third, it is useful to trace two types of rays through an optical system: axial 
rays, which go through crossovers at recurring images of the object we are imag-
ing, and field rays, which go through crossovers at images of the beam-defining 
aperture, and traverse the object plane some distance from the optic axis.   

Fourth, when modeling electron-optical systems, it is often convenient to run 
the electrons backwards, so that their trajectories can start at a place where the op-
tical conditions are readily defined, such as in the sample plane of a condenser-
objective lens.  Provided that the polarity of all the magnetic fields is reversed at 
the same time, the backward-traveling electrons trace out exactly the same trajec-
tories as the forward-traveling ones.  Applying this principle to Fig. 1, one can see 
that reversing the direction of the electron travel in mode (b) produces the same 
schematic of magnifying the crossover (and demagnifying the angular range) as 
depicted in mode (c). 

Fifth, conservation of brightness (Liouville’s theorem) means that the area of a 
crossover times the solid angle of the rays converging into it is constant through-
out any part of an optical system that contains no apertures.  The magnification of 
each crossover is therefore simply equal to 1/angle at which the rays going 
through the crossover meet.   

Sixth, there is no such thing as a completely parallel illuminating probe.  If it 
were completely parallel, all the rays would have to originate from the same point 
in the aperture plane.  The area subtended by a point being zero, this would mean 
that for a practical electron source of finite brightness, the electron flux through 
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the aperture plane would also be zero.  In other words, an illuminating beam with 
a zero spread of angles automatically means zero electron flux, and a real illumi-
nating beam will therefore always have a finite spread of angles.     

Fig. 2 illustrates the formation of electron probes of different degrees of con-
vergence in a complete STEM.  I have placed the electron source at the bottom, 
with the electron beam traveling upwards, as pioneered by Vacuum Generators 
(VG) and currently done in Nion microscopes.  The shown source is a cold field 
emission electron gun (CFEG), the brightest and most coherent electron source 
presently known.  (For a “conventional” view, in which the electrons travel 
downwards, simply turn the page upside down.) 

The angles of the rays defining the illuminating beam have been greatly exag-
gerated for better schematic clarity.  In practice, the unscattered electrons stay 
close to the optic axis.  The largest deviation, about 50 µm, typically occurs in the 
front-focal and back-focal planes (FFP and BFP) of the condenser-objective lens 
(OL).    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Different ways of illuminating the sample in a STEM.  

Mode (a) illustrates the standard way of operating the STEM when acquiring 
high resolution scanning transmission images.  With third-generation aberration 
correctors (see [7] for a description of STEM correctors), the convergence semi-
angle on the sample is typically around 30-40 mr.  The smallest attainable probe 
size, which is given by the diffraction limit 

 

d = 0.61
λ
αo

       (1) 
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(where λ  is the electron wavelength and αo is the illumination semi-angle) is 
then about 0.5 Å in a 200 keV STEM operating with a very small beam current.  
For larger probe currents, d grows bigger due to source-size broadening, as de-
scribed quantitatively in [8].  The probe can also be broadened by aberrations and 
instabilities.  Even so, sub-Å probes are now readily achievable in aberration-
corrected STEMs operating at 100 keV and higher.  

Mode (b) parallelizes the beam simply by adjusting condenser lenses C2 and 
C3, much like mode (c) in Figure 1.  The narrower beam traverses the corrector, 
whose precise setting then becomes much less critical, and which can even be 
turned off altogether.  In practice, a reduction of the beam divergence by about 
40x is readily possible, giving a beam with a semi-angle of 1 mr, and a diffraction-
limited probe size of around 2 nm.  The total beam current can be kept the same, 
or increased by strengthening C1, so that the beam density becomes larger on the 
aperture in front of C2.   

Several modern microscopes have a condenser mini-lens (mini CL) just in front 
of the objective lens, and turning this lens on allows the beam to be switched into 
a nano-diffraction mode too (mode (c)).  In practice, another condenser lens is 
then needed after the corrector, to project a beam crossover into the front-focal 
plane of the mini CL without requiring new trajectories through the corrector.  

Mode (d) parallelizes the beam further, by projecting the aperture plane into the 
sample plane, and the source plane into the front-focal plane of the objective lens.  
For clarity of the schematic, the beam through the corrector is shown as similar to 
nanodiffraction mode 2.  In reality, one typically starts from nanodiffraction mode 
1, i.e. with a fairly narrow beam through the corrector.  The probe convergence at 
the sample is determined by how wide the image of the source is in the front-focal 
plane of the OL.  The half-angle of the illumination αo ' at the sample is:   

 

αo '=
ds

2 fo

      (2) 

 
where ds  is the size of the source projected into the FFP and fo  the focal 

length of the objective lens.  For CFEG STEM, the typical projected source size is 
about 20 nm. fo  of 2 mm therefore givesαo ' = 10 µrad., i.e. the beam becomes 
quite parallel in this mode.  At the same time, the diffraction-limited probe size at 
the sample is about 0.15 µm.  The large probe size is why we call this mode “mi-
crodiffraction”. 

If the image of the source is made only about a nm in size, either by the last 
lenses of the corrector, or by a CL minilens preceding the OL FFP, if one is pre-
sent, thenαo ' can be made smaller than 1 µrad and the illumination becomes very 
parallel indeed.  The probe on the specimen then grows to several µm in size, but 
it can still be largely coherent.  

A problem with mode (d) is that the objective lens parallelizes the outgoing 
electron beam, and features of interest in the diffraction pattern obtained with the 
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parallel illumination, which can lie at scattering angles < 0.1 mrad, remain close to 
the optic axis.  The projector lenses must then be highly excited to produce the 
large camera lengths, of the order of 10 m, that are needed to project a clear ver-
sion of the pattern onto the final detector.  This difficulty is avoided if the objec-
tive lens is turned off altogether (mode (e)).  A diffraction-limited probe size of 
the order of between 0.01 and 1 µm is then again possible, with a correspondingly 
parallel illuminating beam.  At the same time, the scattered electrons now spread 
away from the optic axis rather than become parallelized, and very large camera 
lengths at the detectors are much easier to attain.   

 

Coherence, intensity and shape of the illuminating 
probe 

A coherent electron probe is one in which the electron wave-packets extend 
over the full width of the probe, and electrons constituting the probe carry no in-
formation about which part of the source they came from.  An incoherent probe is 
one in which the wave-packets are narrower than the probe, and the electrons go 
through the probe at locations corresponding to where they originated at the vir-
tual source.  In practice, of course, a perfectly coherent probe carries zero probe 
current, and hence all probes are only partially coherent.   

A convenient description of partial coherence is provided by the concept of the 
“coherent probe current”, defined as the current for which the probe size due to 
diffraction and the projected source size are the same [8].  The magnitude of this 
current is determined only by the electron source, and it does not change no matter 
what the optical system does to the beam: magnify or demagnify the probe, accel-
erate or decelerate the beam.  Coherent probe currents are typically about 150 pA 
for a cold field emission gun (CFEG) and 30 pA for a Schottky source [8].  Both 
values may increase in the future; for instance, a coherent probe current of 430 pA 
has been measured recently for a newly developed CFEG [9].   

Probes with currents less than the coherent value are largely coherent and ex-
hibit various interference phenomena not observed with incoherent probes: e.g., 
interference fringes in overlap region produced by Bragg spots whose separation 
is less than the convergence angle of the probe.  They are also at most √2 larger 
than the diffraction-limited probe size, whereas incoherent probes are typically 
much larger than the diffraction limit.  One can of course pass continuously from 
the coherent into the incoherent regime simply by changing the amount of the 
beam current admitted through the final beam-defining aperture, either by chang-
ing the aperture size, or by changing the magnification of the beam projected onto 
the aperture. 

The precise shape of the probe depends on what it images.  If the probe is co-
herent and contains an image of the source, as in modes (a-c) and (e) in Fig. 2, 
then it typically contains the Airy disk distribution [10], somewhat smoothed by 
the partial incoherence.  Such a probe has multiple rings around the central maxi-
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mum, and can also contain pronounced and not necessarily symmetric tails arising 
due to remaining aberrations.   

If the probe contains an image of the beam-defining aperture, as is done for in-
stance in mode (d), it typically has a more square profile, but it can still contain 
pronounced Fresnel fringes due to the aperture being projected into the sample 
plane unfocused.  Making sure that the aperture image is properly focused is an 
extra constraint, which can be satisfied if an extra lens is available.  Every aberra-
tion-corrected microscope has several extra lenses, and setting up the illumination 
so that the aperture image is sharply in focus is therefore mostly a matter of mak-
ing sure the lenses are set up correctly.  Putting a beam crossover in one of the 
lenses, i.e. using this lens as a “field lens”, which then does not change the heights 
of the crossovers in the column but changes the heights of the focused images of 
the illuminating aperture, makes the set-up especially convenient.   

An illumination mode in which the illuminated spot on the sample is a focused 
image of an aperture rather than an image of the source is called Kohler illumina-
tion [11].  It is the main illumination mode used in optical microscopy, and it can 
have major advantages as an illumination mode in electron microscopy too. 

Scanning modes  
A high-performance STEM typically has 4 layers of scan coils, and the layers 

can be driven independently.  Two of the layers are before the sample and two 
layers after the sample.  A variety of scan modes becomes possible with such an 
arrangement.  Fig. 3. illustrates two of them: regular scanning and beam rocking, 
as used for instance for precession diffraction [12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Different ways of scanning and de-scanning the beam in a STEM.  
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For regular scanning (mode (a)), the beam is made to rock about the “coma free 
plane” of the objective lens, which is located between the front-focal plane of the 
lens and the sample.  The coma-free plane can be thought of as the plane in which 
the objective lens effectively inserts the phase change due to its spherical aberra-
tion (Cs), i.e. the plane in which sideways beam shift must be avoided if coma is 
not to arise as a misalignment aberration in a Cs-producing optical element.  Be-
cause the coma-free plane is located closer to the sample than the front-focal plane 
of the OL, coma-free scanning rocks the angle of beam at the sample slightly, and 
the correct ratio setting of the de-scan coils is not the same as for the scan coils.  
In practice, however, the rocking is quite small: less than 50 µrad for a 100 nm 
field of view.   

De-scanning makes sure that the beam does not move on the detectors, espe-
cially the energy-loss spectrometer, in which beam movement causes a shift of 
spectra in energy. In practice, this correction only becomes important for scans 
larger than about 100 nm in size.   

The beam rocking mode (b) involves setting the ratio of the first and second 
layers of the scan coils such that the beam is shifted while remaining nearly paral-
lel to the optic axis as it enters the OL.  The beam is typically much narrower in 
this mode, as needed for nanodiffraction, and rocks about a stationary point on the 
sample.  Anti-symmetric de-rocking brings it back onto the optic axis.  The scan 
magnitudes in this mode are typically much larger than for regular scanning used 
to acquire high-resolution images.  With an objective lens of 2 mm focal length, 
the shift of the beam entering the OL amounts to 2 µm for 1 mrad of rocking, and 
rocking angles of 20 mrad and more are of interest.   

It is also worth noting that when the objective lens is switched off, this kind of 
scan becomes a regular scan (parallel scan on the sample).  The resultant imaging 
mode is very useful, because it provides a low magnification view of the sample. 

Beam rocking as shown in mode (b) was first implemented by Eades in a Phil-
ips 400 EM [13], and was used soon thereafter by Higgs and Krivanek for obtain-
ing EELS channeling maps [14]. For precession diffraction, the basic features of 
the scanning system are the same, but the scan is made conical rather than rectan-
gular.  There are various commercial devices able to perform such scans when 
added to electron microscopes [15].  Some microscopes such as the Nion Ul-
traSTEM™ [6,9] have the hardware needed to do the scans already built into 
them, but presently lack software dedicated to this type of operation. 

For rocking ranges smaller than about 10 mrad, the relationship between the 
scans needed in the different layers of scan coils is approximately linear, and scan 
coil layers 2-4 of the complete scan-descan system can therefore be driven by a li-
near combination of the signals sent to scan coils in layer 1.  For rocking angles 
higher than about 10 mrad, spherical aberration and also aberrations such as 3-fold 
astigmatism begin to affect the scan.  The probe then starts wondering on the sam-
ple instead of rocking about a stationary point, and it also goes out of focus and 
becomes astigmatic.  This is shown schematically in mode (b) for the beam that is 
deflected by a large amount.   
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A simple solution is to make the relationship between the signals sent to the 
different scan coil layers non-linear, as shown for mode (c).  Adding a negative 
3rd-order curve to the scan signal for scan coil layers 2 and 3 (i.e., weakening the 
large-magnitude deflections from these coils) can compensate for spherical aberra-
tion, adding a parabola term can compensate for 3-fold astigmatism and remnant 
axial coma.  At the same time, the probe focus and astigmatism need to be ad-
justed dynamically across the scan field.  (For correctly aligned conical precession 
scans, only the astigmatism adjustment needs to be done dynamically.)  A station-
ary, diffraction-limited nanoprobe, with an angular range of about a mrad and a 
stationary size of < 5 nm should then become available for rocking and precession 
scans of 50 mrad magnitude and beyond.  To my knowledge, such a system has 
not yet been implemented in a STEM.  The basic hardware for it exists in every 
Nion STEM column, and it is simply a question of spending the time needed to 
program the non-linear scans.   

An alternate solution would be to scan the beam using scan coils located in 
front of the aberration corrector, which would then be able to automatically cor-
rect the effects of axial aberrations, just like it corrects the aberrations when pro-
ducing a probe with a large semi-angle.  However, such a system would not cor-
rect imperfections of the scan coils (such as non-linearities), and a completely 
corrected scan-descan system would need two correctors, one pre-sample and one 
post-sample.  So even though a corrector could correct the scan imperfections in 
principle, in practice it will probably be more efficient to compensate them in-
stead, as outlined above. 

 

Conclusion 
An aberration-corrected scanning transmission electron microscope is a very 

powerful instrument, which makes possible many kinds of experimental tech-
niques.  This brief summary of the optical solutions for some of the techniques is 
far from comprehensive, and there is no space in these printed notes for examples 
of applications.  These will be given in the talk at the school.   

A comprehensive compendium of the many aspects of STEM capabilities has 
appeared recently [16].  It includes chapters on STEM history, STEM imaging 
theory, application examples of sub-Å resolution imaging, nanodiffraction and dif-
fraction imaging, EELS, fluctuation microscopy, low-voltage STEM, etc.  I rec-
ommend it highly to all students interested in exploring electron crystallography 
with a STEM. 
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Atomic resolution electron microscopy 
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1. Introduction 
1.1. Atoms : the alphabet of matter 

We are witness of an exciting era in which nanoscience gradually evolves from 
describing over understanding to designing. Science has made it possible to fabri-
cate and characterize materials and devices on the nanoscale but also to under-
stand and predict their properties. In the future this interplay between theory and 
experiment will further lead to fabrication of nanostructures with designed proper-
ties. But this interplay needs a quantitative communication language. Fortunately 
nature itself provides the ideal language since matter consists of discrete atoms 
and all the structure-property relationships are unambiguously coded in the posi-
tions of these atoms. In terms of communication theory, the atoms are the “alpha-
bet” of nature and the atomic positions are the “messages” between theorists and 
experimentalists. Figure 1 shows a scheme of the future interplay between expe-
riment – theory and design. 

 
 

Fig. 1. 

 
Fig. 2.  

What is the precision on the atom positions that one will need to understand and 
predict structure-property relationships? Figure 2 shows a graph in which the band 
gap of a range of semiconductors and isolators is plotted against the distance be-
tween neighbouring atoms. From this roughly linear relationship we see that even 
a change in interatomic distance in the order of 1 picometer (0.01 Angstrom) will 
alter the energy gap by about 50 meV which is of the same order of magnitude as 
the melting heat of ice. Thus for designing the optical properties of semiconduc-
tors (bandgap engineering) and for the properties of nanostructures in general one 
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must be able to measure and control the atom positions to a precision of the order 
of picometers. 

1.2 Why Electron microscopy? 

The only way to obtain information from an object is by interaction with particles 
(electrons, photons, …) which after the interaction can be the detected in real 
space (imaging) or Fourier space (diffraction). The advantage of imaging is that it 
contains the phase information of the Fourier components up to the resolution of 
the microscope and that the images are more closely related to the atomic structure 
that one wants to determine. Since most nanostructures are aperiodic one cannot 
exploit the redundancy of a large number of identical units as in crystals (except 
for single-particle cryo EM) and one disposes only of the particles that have inte-
racted with the single nanostructure. For this reason electrons are by far the most 
appropriate imaging particles because they interact with the electrostatic potential 
of the atom (electrons and nucleus) and this interaction is orders of magnitude 
stronger than that of X-rays and neutrons even in relation to the radiation damage 
[1]. A disadvantage of this strong interaction is that multiple scattering becomes 
dominant and the interpretation of the experimental data requires more elaborated 
theoretical and computational efforts. But today the progress in the theory and si-
mulations has also reached the stage of a full quantitative agreement so that there 
is no need to avoid strong scattering conditions. Furthermore the resolution of the 
newest electron microscopes is sufficient to visualise single atoms so that it has 
become possible to use HREM images for quantitative refinement of the atom po-
sitions. And because of their large kinetic energy, individual electrons can be de-
tected with high efficiency in novel detectors such as CCD cameras so that all  in-
formation be captured and atom positions can be determined with the  highest 
attainable precision, only limited by the counting noise. In that case, the limiting 
factor is the number of imaging particles, available in a given observation time, 
which can be limited by the brightness of the source, by the stability of the instru-
ment or by the radiation damage in the object. An advantage is that the electron 
beam can be focussed by lenses and combined with a bright field emission source 
yield a higher brightness than the X-ray beams in a synchrotron. 
With the newest generation of aberration corrected electron microscopes the reso-
lution becomes of the order of 0.5 Angstrom, so that the ultimate resolution is then 
limited by the scattering factor of the atoms. In that case the images contain all the 
information that can be obtained with electrons and imaging can compete with dif-
fraction. But ultimately one hits another limit than cannot be surpassed. When the 
electron collides with an atom, it can transfer energy to the atom which causes the 
atom to vibrate with a mean displacement of the order of 0.2 Angstrom. Ultimate-
ly, even more important than resolution will be precision (“error bar”) with which 
one can determine the atom position and which depends on the number of imaging 
particles that interact with the atom. 
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2. Principles of linear image formation 
2.1. Real imaging 

The quality of an imaging device such as a microscope or a telescope can be 
judged by the image it makes of a sharp point. This is called the point-spread func-
tion (PSF). In the field of signal processing this is called “impuls response func-
tion”. Let us now consider a very simple case of real imaging of a real object such 
as the picture in Figure 3. Every pixel in an object can be considered as an inde-
pendent point. If we now assume that the imaging is linear, the image of an as-
sembly of pixels is the same as the assembly of the images of the pixels. Thus 
every pixel in the image f(r) is blurred into a point spread function P(r). Further-
more one can assume that the imaging characteristics are translation invariant, so 
that the shape of the PSF is independent of the position of the pixel.  

 ( ) ( ) ( )n n
n

i f P= −∑r r r r  (1) 

If we now take the limit at which the points are take infinitesimally close together, 
the sum in (1) becomes an integral (2) which is mathematically called a convolu-
tion product (3). 

 ( ) ( ) ( )i f p d′ ′ ′= −∫r r r r r  (2) 

 ( ) ( ) ( )  *i f P=r r r  (3) 
This result is valid in 1D, 2D or even in 3D (tomography) imaging. 
The blurring limits the resolution of the imaging device. Indeed, when two points 
are imaged with a distance smaller than the “width” of the point spread function, 
their images will overlap so that they become indistinguishable. The resolution, 
defined as the smallest distance that can be resolved, is then related to the width of 
the point spread function.  
It is very informative to describe the imaging process in Fourier space. Let us call 
the Fourier transforms of f(r), p(r) and i(r) respectively F(g), P(g) and I(g). The 
convolution theorem states that the Fourier transform of a convolution product is a 
normal product. If we thus Fourier transform we obtain  

 ( ) ( ). ( )I F P=g g g  (4) 
The interpretation of (4) is rather simple. F(g) represents the content of the object 
in the spatial frequency domain (or the Fourier domain) and P(g) is the transfer 
function. Every imaging device can thus also be characterized by its transfer func-
tion (band filter) P(g), which describes the magnitude with which a spatial fre-
quency g is transferred through the device. This is shown in Figure 5. The noise, 
N, is also indicated. 
The transfer function P(g) affects both the amplitude and the phase of the spatial 
frequency component F(g). 
The resolution of the instrument ρ is defined from the cut-off 1/ρ between signal 
and noise beyond which no spatial information is transferred. This is the type of 
resolution in the sense as defined by Rayleigh. It is inversely related to the 
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“width” of the point-spread function. If the transfer function would be constant 
(i.e. perfectly flat) in the whole spatial frequency range, the impulse response 
function would be a delta function so that i(r) = f(r). 

 

 
Fig. 3.  

 
 

 

 

 

 

 

 

Fig. 4.  

If the point-spread function is known, the original image can be restored up to the 
resolution ρ by the following steps: Fourier transform i(r) to I(g) , multiply I(g) by 
1/P(g) and Fourier transform back to f(r). This is called image restoration or deb-
lurring. 1/P(g) is called a deconvolution filter. However a problem occurs for 
these values of g for which the transfer function is zero since dividing by zero will 
yield unreliable results. A modified type of a deconvolution operator that takes 
care of this problem is the so called Wiener filter. The attainable resolution after 
deblurring depends on the resolution of the imaging device. Figure 3 shows an ex-
ample of image restoration. 

2.2. Coherent imaging 

In the case of coherent imaging as in electron microscopy the object and the point 
spread function are complex wave functions having an amplitude an a phase com-
ponent. Also in this case the complex image wave ψ(r) can be described in real 
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space as a convolution product of the complex object function Φ(r) and the com-
plex point-spread function P(r) 

 ( ) ( ) ( )im  Pψ ψ= ∗r g r  (5) 
or in Fourier Space 

 im ( ) ( ). ( )Pψ ψ=g g g  (6) 
When the image is recorded, only the image intensity is detected 

 2
im( ) ( )I ψ=r r  (7) 

Thus, at that stage, the phase information is lost. If one would be able to retrieve 
the image phase by “holographic” methods, it would be possible to deconvolute 
the transfer of the microscope and to reconstruct the object wave and enhance the 
resolution. 

2.3. Imaging in the electron microscope [2] 

When traversing the electron microscope the electron beam g (which carries the 
Fourier Component F(g) undergoes a phase shift χ(g) with respect to the central 
beam caused by spherical aberration and defocus. Then the transfer function in 
P(g) is given by  

 [ ]( ) ( )exp ( )P A iχ= −g g g  (8) 

 3 4 21( )
2 sC g gχ π λ πελ= +g  (9) 

with Cs: the spherical aberration coefficient, ε: the defocus, λ: the wavelength and 
A(g) the physical aperture selecting the imaging beams. At large spatial frequen-
cies also higher order aberrations can become important. Figure 5 shows the im-
aginary parts of the point spread function (left) and the transfer function (right) of 
an HREM. Dotted line: without incoherent damping. Solid line: with incoherent 
damping. The axes are denoted in Glaser units (see 3.4). If the electron micro-
scope is subject to fluctuations during the recording of the image, we have to av-
erage the image intensity over the various states of the microscope, and over the 
different states of the object. Hence the total averaged intensity is given 

 
22( ) ( ) ( ) ( )

O MO M
P Pψ ψ∗ ≠ ∗r r r r  (10) 

However, the numerical calculation of these averages requires a repetitive calcula-
tion for the coherent image intensity over all the states of microscope and object 
which is very time consuming. Therefore, the usual way to speed up this process is 
by performing the averages of the microscope and the object separately 

 
2

( ) ( ) ( )
O M

I Pψ≈ ∗r r r%  (11) 

In this way the point spread function of the microscope is approximated by an ef-
fective point spread function 〈P(r)〉 and the object wave is approximated by an ef-
fective object wave 〈ψ(r)〉. Then (11) can be considered again as a coherent imag-
ing process where an “averaged” microscope images an '”averaged” object, which 
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is called the coherent approximation. This results in a damping of the phase trans-
fer function  

 [ ]( ) ( ) exp ( ) ( , , )p A i Dχ α= − Δg g g g  (12) 
D is the damping factor [3]. The effect of the damping function is shown in Figure 
5. However, this approximation is only correct for very thin objects. A more cor-
rect treatment is discussed in [4]. 
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Fig. 5.  

2.4. Imaging at optimum defocus: phase contrast microscopy 

In an ideal microscope, the image would exactly represent the object function and 
the image intensity for a pure phase object function would be  

 [ ] 222( ) ( ) exp ( ) 1iψ φΦ = = =R R R  (13) 

i.e. the image would show no contrast. This can be compared with imaging a glass 
plate with variable thickness in an ideal optical microscope. Assuming a weak 
phase object (WPO) one has 

 ( ) 1 ( )iψ φ≈ +R R  (14) 
The constant term 1 contributes to the central beam (zeroth Fourier component) 
whereas the term iφ mainly contributes to the diffracted beams. If the phases of the 
diffracted beams can be shifted over π/2 with respect to the central beam, the am-
plitudes of the diffracted beams are multiplied with exp(π/2). Hence the image 
term iφ(R) becomes −φ(R). It is as if the object function has the form  

 [ ]( ) 1 ( ) exp ( )φ φΦ = − ≈ −R R R  (15) 
i.e. the phase object now acts as an amplitude object. The image intensity is then  

 2
im ( ) 1 2 ( )ψ φ≈ −R R  (16) 

which is a direct representation of the phase of the object. In optical microscopy, 
this has been achieved by F. Zernike by shifting the central beam through a quar-
ter wavelength plate.  
In electron microscopy the optimal imaging can be achieved by making the trans-
fer function as constant as possible. From (9) and Figure 5 it is clear that oscilla-
tions occur due to spherical aberration and defocus. However, the effect of spheri-
cal aberration which, in a sense, makes the objective lens too strong for the most 
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inclined beams, can be balanced somewhat by slightly underfocussing the lens. 
The optimum defocus value (also called Scherzer defocus) for which the plateau 
width is maximal, is given by  

 1/21.2( ) 1.2SchsCε λ= − = −  (17) 
with 1 Sch = (λCs)1/2 the Scherzer unit. The transfer function for this situation is 
depicted in Figure 5 (right). The phase shift χ(g) is nearly equal to −π/2 for a large 
range of spatial coordinates g. This result was first obtained by Otto Scherzer [2]. 
Furthermore, as is shown in §3 a thin object acts as a phase object in which the 
phase is proportional to the projected electrostatic potential of the object so that 
the image contrast for a very thin object can be interpreted directly in terms of the 
projected structure of the object.  

2.5. Resolution 

At optimum focus all spatial frequencies g with a nearly constant phase shift are 
transferred forward from object to image. Hence the resolution can be obtained 
from the first zero of the transfer function (9) as:  

 1/4 3/41 0.65 0.65GlS sC
g

ρ λ= ≈ =  (18) 

with 1/4 3/4Gl sC λ=  the Glaser unit. This value is generally accepted as the standard 
definition of the point resolution of an electron microscope, Sρ . It is also equal to 
the width of the point spread function (Fig.5). The information beyond the point 
resolution is transferred with a non-constant phase and, as a consequence, is redi-
stributed over a larger image area. 
As discussed in §4 it is possible to retrieve the phase of the image wave. And 
since the complex point spread function of the electron microscope is known it 
can be deconvoluted so as to reconstruct the electron wave at the exit face of the 
object. This is called exit wave reconstruction. 
Historically this was the reason that Dennis Gabor developed holography [5] with 
the goal to push the resolution of the electron microscope to the level of the indi-
vidual atom. 
By exit wave reconstruction the phase oscillations in the transfer function can be 
corrected and the resolution is not limited by the point resolution but by the “in-
formation limit” which can be defined as the finest detail that can be resolved by 
the instrument. It corresponds to the maximal spatial frequency that is still trans-
mitted with appreciable intensity. For a thin specimen, this limit is mainly deter-
mined by the envelope of chromatic aberration (temporal incoherence) and beam 
convergence (spatial incoherence). In principle beam convergence can be reduced 
using a field emission source (FEG). If temporal incoherence is predominant, the 
damping envelope function is given by (12) from which the resolution can be es-
timated as  

 
1/21

2I g
πλρ Δ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 (19) 
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with Δ the defocus spread due to fluctuations in the incident voltage and the lens 
currents and the thermal energy spread of the electrons. In advanced electron mi-
croscopes the information limit can be pushed below 0.5 Angstrom. 
However, as discussed in § 1, the ultimate resolution is limited by the finite 
“width” of the atom. In case of electron channeling in which the atoms along a 
column act as focussers, the exit wave can be more sharply peaked which also im-
proves the ultimate resolution. 

2.6. Aberration corrected electron microscopy 

Recently it has become possible to construct electron microscopes with an aberra-
tion correction which allows to choose and reduce the spherical aberration con-
stant Cs. [6-8]. However, even with a very low Cs value, it is possible to operate at 
optimum focus conditions in which the optimum focus is still given by (17) and 
the resolution by (18). This means that the shape of the point spread function and 
transfer function in Figure 5 remain unchanged since the axes are scaled in univer-
sal Glaser units which scale with the ¼ power of Cs. This means that the resolu-
tion can be improved by a factor 2 if the Cs value is reduced by a factor 16. 
Another advantage of a Cs corrected microscope is that the information in the 
image is much less delocalized. However, for a quantitative interpretation of the 
images, one still has to use holographic wave reconstruction methods combined 
with quantitative model based refinement (see(§ 4). 

3. Experimental HREM 
3.1. Aligning the microscope 

Before starting high resolution work, it is necessary to determine the most impor-
tant optical parameters of the instrument for later use in image simulation and re-
construction. For very high resolution the standard correction procedure for the 
aberrations is not sufficient and methods have been developed for automatic 
alignment. One of the commonly used methods is to calculate the Fourier trans-
form of an image of an amorphous object (diffractogram), which acts as a kind of 
white noise object. The diffractogram represents the contrast transfer function 
(Figure 5) corresponding with the particular focus. By tilting the specimen in dif-
ferent directions, one then obtains a series of diffractograms, called a Zemlin tab-
leau, which allows to calculate the main aberration constants (Figure 6). In ad-
vanced electron microscopes, this is done semi-automatically.  

3.2. The specimen 

The main requirement for atomic resolution electron microscopy is that the speci-
men should be sufficiently thin, i.e. less than about 10 nm and clean Crystalline 
specimens with a unit cell with two large and one small lattice parameter are most 
ideal for high resolution electron microscopy. In that case the reciprocal lattice 
consists of dense planes (Laue zones) which are largely separated. Such crystals 
can be oriented with their short axis parallel to the incident beam so that the nearly 
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flat Ewald sphere touches the Laue zone through the origin (Figure 7) and a large 
number of diffracted beams is excited simultaneously and maximal information is 
present in the image. In this situation, the electrons propagate parallel to a zone 
axis, i.e. parallel to the atom rows. Only in this way, a possible interpretation of 
the images in terms of the projected structure can be meaningful. The same argu-
ment holds also for crystals with defects (Figure 8). 

 
Fig. 6 

 
Fig. 7.  

 
Fig. 8.  

 
Fig. 9.  

After finding a suitably thin part with the proper orientation, one has to adjust the 
focus. When the specimen is very thin, the zero focus corresponds to minimal con-
trast. Maximal contrast appears close to the optimum defocus (Eq. (17)). Even in 
aberration contrasted microscopes, one can, on going through focus, reverse the 
contrast. In practice, since the focus is not exactly known, especially in the case of 
thicker specimens, one has to take a series of images at gradually different focus 
settings, recorded approximately around the optimum defocus. This is called a 
through focus series.  

3.3. Interpretation of the high resolution images 

In §2 we have shown that, at optimum defocus up to the point resolution of the 
electron microscope, the high resolution image of a thin object can be integrated 



10  

directly in terms of the projected structure. This is clear in Figure 10, which shows 
a series of images at different focus values for a Ti2Nb10O29perovskite experimen-
tal images (upper parts) (Courtesy: S. Iijima) [9] and computer simulated images 
(lower parts). And close to the optimum focus (which is the case in about -800 Å) 
the image clearly corresponds with the projected structure of the perovskite in 
Figure 11 in which the octahedrons and the open tunnels are clearly revealed. Al-
though these results are very old (in fact they were the first HREM images ever) 
they are still very informative. 

 
Fig. 10.  

 
 

Fig. 11.  

In general the interpretation of high resolution images never appears to be trivial. 
The only way out remains in the comparison of the experimental images with 
those calculated for various trial structures. During the imaging process, the elec-
trons undergo three distinct interactions. Each of these interactions is known and 
can be calculated by the computer. First, the electron scatters dynamically in the 
crystal. This interaction can be simulated using the multislice methods [10] (Ap-
pendix B). However, as an input to the program one has to specify all the object 
parameters such as unit cell, position and type of cell atoms, thermal atom factors 
(Debye-Waller factors), object orientation and thickness. The result of this calcu-
lation yields the wavefunction at the exit face of the crystal. In a second step, the 
formation of the image in the electron microscope is simulated using the expres-
sions (8) (9) (10) and (12), for which all the instrumental parameters have to be 
specified. Finally the electron intensity in the image plane is calculated by squar-
ing the wavefunction and is displayed. Different commercial software packages 
exist for high resolution image simulations. References are given in [11]. 
If image simulation is used for visual comparison, it can only be used if the num-
ber of plausible models is very limited. Direct methods, which extract the informa-
tion from the images in a direct way so as to be used as input for further quantita-
tive refinement, are a better way to go.  
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4. Quantitative HREM 
4.1. Model based fitting 

In principle one is usually not so interested in high resolution images as such but 
rather in the object under study. High resolution images are then to be considered 
as data planes from which the structural information has to be extracted in a quan-
titative way. This can be done as follows: one has a model for the object and for 
the imaging process, including electron object interaction, microscope transfer and 
image detection. The model contains parameters that have to be determined by the 
experiment. This can be done by optimizing the fit between the theoretical images 
and the experimental images. The goodness of the fit is evaluated using a match-
ing criterium such as maximum likelihood or R-factor (cfr. X-ray crystallography). 
For each set of parameters one can calculate this fitness function and the search 
for the optimal fit by varying all parameters. The optimal fit then yields the best 
estimates for the parameters of the model that can be derived from the experiment. 
In a sense one is searching for an optimum of the fitness function in the parameter 
space, the dimension of which is equal to the number of parameters. The object 
model that describes the interaction with the electrons should describe the elec-
trostatic potential, which is the assembly of the electrostatic potentials of the con-
stituting atoms. Since for each atom type the electrostatic potential is known, the 
model parameters then reduce to atom type, positions and thermal atom factors.  
A major problem is now that the object information can be strongly delocalised by 
the image transfer in the electron microscope (Figure 5) so that the influence of 
the model parameters of the object is completely scrambled in the high resolution 
images so that the dimension of the parameter space is much too high to be feasi-
ble for model based filtering. The only way out is to find a method that “unscram-
bles” the many parameters so as to provide a pathway to the global optimum. In a 
sense, a direct method must thus “resolve” the atoms so as to yield an approximate 
atomic structure that can then be used as a seed for further quantitative refinement 
by fitting with the original experimental data. In X-ray crystallography, where also 
the information of all the atom positions is scrambled in the intensities of the ref-
lections of the diffraction patterns, direct methods have been developed which en-
able to get sufficient information on the phases of the reflections so as to yield an 
approximate starting structure [11]. In electron microscopy, the information about 
the atom positions is scrambled by the blurring due to the electron-object interac-
tion and due to the imaging in the electron microscope. 

4.2. Phase retrieval 

Undoing the scrambling from object to image consists of three stages. First, one 
has to reconstruct the wavefunction in the image plane (phase retrieval), then one 
has to reconstruct the exit wave of the object and one has to “invert” the scattering 
in the object so as to retrieve the object structure. 
The phase problem can be solved by holographic methods. Two methods exist for 
this purpose: off axis holography and focus variation. In off axis holography, the 
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beam is split by an electrostatic biprism into a reference beam and a beam that tra-
verses the object. Interference of both beams in the image plane then yields 
fringes, the positions of which yield the phase information. In the focus variation 
method, which is a kind of in line holography, the focus is used as a controllable 
parameter so as to yield focus values from which both amplitude and phase infor-
mation can be extracted [12-13]. Images are captured at very close focus values so 
as to collect all information in the three-dimensional image space. Each image 
contains linear information and nonlinear information. By filtering out this linear 
information the phase can be retrieved. 

 
Fig. 12.   

Fig. 13. . 
 
A simple way to describe this reconstruction is the following. Both for weak ob-
jects (14) as for thick objects (25) and using (5) the wave in the image plane is 

 im ( ) 1 ( )ψ θ= +R R  (20) 
with 

 ( ) ( ) ( )Pθ ψ= ∗R R R  (21) 
where ψ(R) is the interaction wave and P(R) is the PSF of the microscope. If we 
now defocus the image wave over a defocus distance ε then 

 im ( , ) 1 ( ) ( , )Pψ ε θ ε= + ∗R R R  (22) 
with P(R,ε) the defocus propagator. For the image intensity we now have  

 [ ]2*( , ) 1 ( ) ( , ) *( ) ( , ) ( ) ( , )I P P Pε θ ε θ ε θ ε= + ∗ + ∗ + ∗R R R R R R R  (23) 
If we now take a series of images at focus values εn and backpropagate them to 
ε=0 and take the average, we get 

 1 1( , ) ( , ) 1 ( ) ( )n n
n

I P
N N

ε ε θ θ∗ − = + +∑ R R R  (24) 

Thus in a sense we have linearised the imaging by a factor N, which already gives 
a very good estimate of θ(R) and from (21) we can then deconvolute for the PSF 
P(R) of the electron microscope so as to reconstruct the exit wave ϕ(R). The pre-
cision can be improved further by including also the nonlinear contribution of (23) 
in the fitting. 



13 

Focus variation is more accurate for high spatial frequencies whereas off axis ho-
lography is more accurate for lower spatial frequencies but puts higher demands 
on the number of pixels and the coherence. 

4.3 Exit wave reconstruction 

As is clear from Eq. (5), the exit wave of the object can be calculated from the 
wavefunction in the image plane by deconvoluting the PSF of the microscope. 
This procedure is straightforward, provided the proper parameters describing the 
transfer function (such as the spherical aberration constant Cs).  
Figure 14 shows the exit wave of an object of YBa2Cu4O8 (high TC superconduc-
tor), which was historically the first experimental result obtained with the focus 
variation method [15].  
It should be noted that, once the exit wave is reconstructed, it is in principle possi-
ble to recalculate all the images of the Fourier series which perfectly fit in the ex-
perimental images within the noise level so that the reconstructed exit wave con-
tains all experimentally attainable object information. 

 

 
Fig. 14. 
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Fig. 15. 

4.4. Structure retrieval: Channelling theory 

The final step consists in retrieving the projected structure of the object from the 
wavefunction at the exit face. If the object is thin enough to act as a phase object, 
the phase is proportional to the electrostatic potential of the structure, projected 
along the beam direction so that the retrieval is straightforward. If the object is 
thicker, the problem is more complicated. 
It is possible however to obtain an approximate structure if the object is a crystal 
viewed along a zone axis, in which the incident beam is parallel to the atom col-
umns. It can be shown that in such a case, the electrons are trapped in the positive 
electrostatic potential of the atom columns, which then act as channels (Figure 
15). If the distance between the columns is not too small, a one-to-one correspon-
dence between the wavefunction at the exit face and the column structure of the 
crystal is maintained. Within the columns, the electrons oscillate as a function of 
depth without however leaving the column. Hence the classical picture of elec-
trons traversing the crystal as plane-like waves in the direction of the Bragg 
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beams, which historically stems from X-ray diffraction, is in fact misleading. This 
is called electron channeling [16]. It is important to note that channelling is not a 
property of a crystal, but occurs even in an isolated column and is not much af-
fected by the neighbouring columns, provided the columns do not overlap. Hence 
the one-to-one relationship is still present in case of defects such as translation in-
terfaces or dislocations provided they are oriented with the atom columns parallel 
to the incident beam. 
The basic result is that the wavefunction at the exit face of a column is expressed 
as [17]: 

 
0

( , )  1   exp  -     - 1  ( )Ez i kz
E

ψ π φ
⎡ ⎤⎛ ⎞

= + ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

R R  (25) 

This result holds for each isolated column. In a sense, the whole wavefunction is 
uniquely determined by the eigenstate φ(R) of the Hamiltonian of the projected 
column and its energy E which are both functions of the “density” of the column 
and the crystal thickness z. It is clear from (25) that the exit wave is peaked at the 
centre of the column and varies periodically with depth. The periodicity is inverse-
ly related to the “density” of the column. In this way the exit wave still retains a 
one-to-one correspondence with the projected structure. Furthermore it is possible 
to parametrise the exit wave in terms of the atomic number Z and the interatomic 
distance d of the atoms constituting the column [17]. This enables to retrieve the 
projected structure of the object from matching with the exit wave. In practice it is 
possible to retrieve the positions of the columns with high accuracy (1 pm) and to 
obtain a rough estimate of the density of the columns.  
For most cases, this expression is sufficiently accurate except for thick objects 
containing heavy atoms, where other higher order states will become more impor-
tant when the distance between adjacent atom columns decreases. It turns out to be 
more convenient to subtract the entrance wave from the exit wave. We will call 
this the interaction wave.  
From Eq. (25), it follows that the amplitude is peaked at the atom column position 
and that it varies periodically with depth and that the phase, which is a constant 
over the column, is proportional to the average mass density of the column. The 
phase linearly increases with depth. The amplitude can be used to determine the 
positions of the atom columns and the phase can be used to determine the compo-
sition of the atom column. 
Figure 16 shows an experimentally reconstructed exit wave (courtesy Jinczek, Ki-
sielowski)) from which the entrance wave is subtracted. As expected from Eq. 
(25), the amplitude is then clearly peaked at the positions of the columns and the 
phase is constant over the column and is a measure of the “weight” of the column. 
A convenient way to visualize the effect of electrons passing through a column is 
by plotting each pixel of the complex exit wave, which is located at a projected 
atom column position, in an Argand plot [18] .This is a representation in which 
each pixel is plotted as a point in a complex plane with its x-coordinate corres-
ponding to the real pixel value and the y-coordinate corresponding to the imagi-
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nary pixel value. As can be derived from eq. (25) the pixels at the exit face of a 
column should all be located on a circle that passes through the point (1,0) 
representing the reference wave. As shown in Figure 17, an increase in the mass of 
the column shifts the point along that “mass” circle and defocussing the exit wave 
shifts the point along the defocus circle. Thus by accurately analyzing the Argand 
plot one can determine both mass an vertical position of the columns. Figure 18 
shows experimental results for Au[100]. 
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Fig. 16. Courtesy C. Kisielowski, J.R. Jinschek 
(NCEM, Berkeley) 
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Fig. 17.  

 
Fig. 18 .  

 
Fig. 19. Courtesy of Jia and Thust [19] 

4.5. Resolving versus refining 

Once the individual atoms can be resolved, their position can be resolved accu-
rately. From statistics it can be shown that the ultimate precision (standard devia-
tion) on the atom position is given by the simple rule σ = ρ/√N, where σ is the 
standard deviation, ρ the resolution and N the number of imaging particles. Hence, 
for a resolution of 1 Angstrom and 10000 interacting electrons, the precision can 
be 0,01 Angstrom, which is sufficient to explain the structure/property relation-
ships (see § 1.1). Figure 19 shows the exit wave of BaTiO3 reconstructed from a 
focal series (two focal images are shown in the inset). By careful fitting of the po-
sitions of the columns the following results were obtained [19]. 
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 Ti – Ti [pm] Ba – Ba [pm]
Geometric 232 232
Experiment 270 216
Theory 266 214

The experimental results are compared with theoretical results, obtained from ab-
initio calculations and the differences are of the order of 0.02 Angstrom. 

Appendix A. Interaction of the Electron with a Thin Object 
We will now follow a classical approach. 
The non-relativistic expression for the wavelength of an electron accelerated by an 
electrostatic potential E is given by 

 h = 
2meE

λ  (26) 

with h the Planck constant, m the electron mass and e the electron charge. 
During the motion through an object with local potential V(x,y,z) the wavelength 
will vary with the position of the electron as: 

 
[ ]

h(x, y,z) = 
2me  E + V(x, y,z) 

λ′  (27) 

For thin phase objects and large accelerating potentials the assumption can be 
made that the electron keeps travelling along the z-direction so that by propagation 
through a slice dz the electron suffers a phase shift. 

 1 1( , , ) 2 ( , , )d x y z   dz  V x y z dzχ π
λ λ

⎛ ⎞= =⎜ ⎟′⎝ ⎠
 (28) 

With /  Eσ π λ=  so that the total phase shift is given by: 
 ( , ) ( , , ) ( , )px y    V x y z  dz    x yVχ σ σ= =∫  (29) 

where Vp(x,y) represents the potential of the specimen projected along the z-
direction. Under this assumption the specimen acts as a pure phase object with 
transmission function: 

 ( , ) exp ( , )px y     i x y  Vψ σ= ⎡ ⎤⎣ ⎦  (30) 
In case the object is very thin, one has 

 ( , ) 1 ( , )px y     i x yVψ σ≈ +  (31) 
This is the weak phase approximation. 

Appendix B. Multislice method 
Although the multislice formula can be derived from quantum-mechanical prin-
ciples, we follow a simplified version of the more intuitive original optical ap-
proach. Consider a plane wave, incident on a thin specimen foil and nearly per-
pendicular to the incident beam direction z. If the specimen is sufficiently thin, we 
can assume the electron to move approximately parallel to z so that the specimen 
acts a pure phase object with transmission function (30) 



17 

 ( , ) exp ( , )px y     i x y  Vψ σ= ⎡ ⎤⎣ ⎦  (32) 
A thick specimen can now be subdivided into thin slices, perpendicular to the in-
cident beam direction. The potential of each slice is projected into a plane which 
acts as a two-dimensional phase object. Each point (x,y) of the exit plane of the 
first slice can be considered as a Huyghens source for a secondary spherical wave 
with amplitude ψ(x,y) (Figure 20). 

 
Fig. 20. Schematic representation of the propagation effect of electrons between successive slic-
es of thickness ε. 

From each point of this slice the electron can freely propagate to the next slice as a 
spherical wave. In the forward scattering approximation (Fresnel approximation)  
the spherical wavefront is approximated by a paraboloidal wavefront (a complex 
gaussian function) so that this step apart from constant factors, can be written as a 
convolution product: 

 2 2( , ) exp ( , ) exp ( ) /px y     i V x y      i k x y  ψ σ π ε⎡ ⎤⎡ ⎤= ∗ +⎣ ⎦ ⎣ ⎦  (33) 

The propagation through the vacuum gap from one slice to the next is thus de-
scribed by a convolution product in which each point source of the previous slice 
contributes to the wavefunction in each point of the next slice. The motion of an 
electron through the whole specimen can now be described by an alternating of 
phase object transmissions (multiplications) and vacuum propagations (convolu-
tions). In the limit of the slice thickness ε tending to zero, this multislice expres-
sion converges to the exact solution of the non-relativistic Schrödinger equation in 
the forward-scattering approximation. The multislice expression can also be de-
duced from a correct quantum-mechanical approach [20]. 
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Abstract   A brief introduction to the phase problem for electrons is given, both in 
terms of the recovery of the phase from images as well as the crystallographic 
phase from diffraction data. More details of many of the techniques will be de-
scribed in later parts of the school. 

Introduction 
 
The phase problem for scattering whether it is by electrons, x-rays, neutrons or 

brownies has been with us for years and is not going to go away. The key point is 
that in a diffraction experiment we measure only the modulus of the scattered 
wave (the square root of the intensity), not the phase. More formally, assuming a 
vanishingly thin phase-grating model (equivalent to a projected potential), the 
wave leaving the sample is 

 

∑ ++=+= ).2exp(1)(1)( gg irigVtirtVir φπσσψ  

 
Where we have amplitude of |Vg| for each reciprocal lattice vector g, and a 

phase φg. The wave in reciprocal space is then 
 

)exp()()()( gg igutVuu φδσδ −+=Ψ  

 
And diffracted intensities that are recorded are: 
  

)()()(
2

gutVuuI g −+= δσδ  

 
The phase term is not recorded; does this matter? Alas it does. As illustrated in 

Figure 1, the phase is what determines the main features of the image which we 
can recover with rather a bad approximation to the amplitudes; the phase of an ap-
ple combined with the amplitude of an orange gives an orange. 
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Apple     
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+ 
 

Orange 
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Fig. 1. A combination of the phase of an apple and the amplitude of an orange leads to an 
orange. 

A more representative example is shown in Figure 2, the recovery of an image 
of perbromothalocyanine for random errors in the amplitude (top) and phase (bot-
tom). The strong scatterers are preserved for quite large modulus errors, but de-
stroyed by relatively small phase errors. 

   0              10°           20°           30°           40° 

10

 
Fig. 2. Illustration of the loss of information with phase and amplitude errors 

The same issues hold with an image, where we measure the amplitude of the 
wave (squared) in real-space, with a slight caveat. It is important to distinguish be-
tween the true phase of the wave, which is lost, and the crystallographic phase 
which is not necessarily lost but is scrambled by the aberrations of the electron 
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microscope. By definition the crystallographic phase is the value associated with a 
particular structure factor referenced to a specific origin in the unit cell.  

Recovering the phase (both types) is something which is discussed in many of 
the other talks and I will focus here on a brief overview, leaving aside holography 
which is a direct method of phase determination. The methods break into three 
classes: 

a) Recovering the phase of images from a series using appropriate filters or 
numerical minimizations to remove the aberrations from the microscope 

b) Recovering the exact phase for a diffraction pattern using constraints due to 
a finite object. 

c) Recovering approximate phases using probabilistic methods based upon the 
approximate satisfying of constraints associated with the presence of peaks (atom-
icity), the potential or charge density being positive or other. The later is called di-
rect methods, but in fact there are many different approaches which are subtly dif-
ferent in terms of approximations used which is a very important issue when 
dealing with electron diffraction data. 

Recovery from a series of images 
 
As a first-order approximation, an image in a high-resolution microscope can 

be written as 
 

)}()(Re{21)( rrtrI ψ⊗+=  
 
Where t(r) is the point response function and ⊗  stands for a convolution. This 

approximation is called linear-imaging theory, and is approximately correct for 
very thin crystals but not numerically completely rigorous. The simplest way to 
recover an approximation to the wave is a Wiener filter, which is the optimum 
least-squares inversion. Switching to reciprocal space, 

 
)}()(Re{2)()( uuTuuP Ψ+= δ  

 
with the standard form for T(u) being 
 

)())(exp()( uEuiiuT χ−=  
 
for an envelope term E(u) which includes the effects of incoherent aberrations 

such as convergence and chromatic terms and in linear imaging theory is given by 
 

)4/4/|)(|exp()( 4222 βλπαχ uuuE −∇−=  
 
For convergence described by α and a focal spread by β.  



4  

The optimum filter is F(u) defined as 
 

})()()({)()(*)( 222 uuPuTuPuTuF η+=  

 
where η(u) is an estimate of the noise. The best recovered image is then just 

F(u)P(u). This filter goes smoothly to zero when there is very little information in 
the image (P(u) is small compared to the noise), or when T(u) (the contrast trans-
fer function) is small. A very simple and useful version of this is the case when 
one takes T(u)=1, which is the optimal Fourier filter without assumption concern-
ing what periodicities are present in the image, as illustrated in Figure 3. 

 

 
Fig. 3. Example of a Wiener-filter showing the raw image (left) and after filtering (right). 

An extension of this for different images at different defoci (dz) is straightfor-
ward, and can be written as 

 

∑ +≈ })(),(),({),()),(),(*)( 222 udzuPdzuTdzuPdzuPdzuTu ηψ
 

Several codes are available for performing an approximate analysis are avail-
able, and are relatively fast. Unfortunately the linear models are not very accurate, 
and one should use the more precise non-linear model where the intensity in an 
image is given by 

 

∫= )dvπiv.r) A(v(I(r) 2exp  

 
where A(v) contains cross-terms involving different diffracted waves as 
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 duvuiui(u)*(u-v) E(u,u-v)A(v) ∫ −+−ΨΨ= ))()(exp( χχ  

 
and 
 

)4/)(4/|)()(|exp(),( 222222 βλπαχχ wuwuwuE −−∇−∇−=  
 
Normally the linear method is used as a first-order approximation, then nu-

merical methods are used to fit the higher-order terms. Codes for this are now 
widely available and go under the name of wave-front recovery.  

Recovery from specific constraints 
 
The second class of methods pertains to cases where the phase problem is 

uniquely solvable. As an approximate (but quite good) explanation, consider the 
problem of a finite, square, real object of MxM pixels embedded in a field of NxN 
pixels where we know a-priori that outside of the object there is no scattering of 
the electron beam. Now consider the intensities we would measure, a total of 
NxN/2 values. There are a total of MxM unknowns, either the values at each of 
the MxM pixels in real space or the MxM/2 complex amplitudes in reciprocal 
space. Iff NxN/2 > MxM then in principle there are more measurements than un-
knowns so the phases can be uniquely determined. 

Of course it is not quite as simple as this, just as M measurements is not always 
enough to find M variables since the measurements may be linearly dependent. 
Fortunately for the case mentioned above it is known that the problem is uniquely 
solvable in two (or more) dimensions. In general more values are needed to over-
come measurement errors, but the method works and has been used for many 
years in the optical field and recently re-introduced into electron and x-ray scatter-
ing under the name of “diffractive imaging”. 

 

 
Fig. 4. Recovery of the amplitude and phase of a finite object using compact support con-
straint. 
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A simple example of this is shown above; for the diffracted intensities shown 
on the left one can recover the amplitude and phase of an artificial nanoparticle 
(right) exploiting the fact that there is no scattering outside of the circular region. 

Direct Methods and Friends 
 
Direct methods come in different flavors ranging from quite simple to rather 

complicated. Historically they were established for x-ray diffraction and/or neu-
tron diffraction and have been used “as is” in most cases for electron diffraction. 
In many ways this is fitting a square peg into a round hole and it is surprising that 
they often work – but they can also fail rather badly. There are several key as-
sumptions: 

a) In real space the true form of the modulus has a limited number of sharp 
peaks surrounded by regions of nearly zero (or constant) modulus. This is known 
as the positivity constraint. It holds strictly for kinematical scattering, for many 
conditions of on-zone imaging where the 1s channeling states dominate but if the 
sample is thicker or there are significant 2p channeling states present it can be in-
valid. 

b) The peaks (atoms in principle, if not then maxima of the string potential) are 
randomly distributed in space. The later allows the use of probabilistic expansions 
of the statistics of phase and modulus relationships. 

c) The number of atoms is known a-priori. For bulk materials this is almost al-
ways the case, for special cases such as surfaces or small precipitates this may not 
be known. 

d) The symmetry is known – for all methods except charge-flipping which is an 
exception to the general rule. 
 

 
Fig. 5. Example of solving a surface structure (SrTiO3 (001) 2x1) using the diffraction data 
(left). The initial map (center) only shows the stronger Ti peaks; refinement and difference 
maps were able to locate the oxygen sites which are shown in blue on the right. 
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Conditions a) and b) hold strictly only for surfaces where the intensities are 
~90% kinematical, as shown in Figure 5. They also are valid when the 1s channel-
ing condition is valid; the intensities do not match what one would expect for kin-
ematical diffraction so refinements based upon such a model give poor results 
with R1 values typically of 0.2-0.3. (More accurate dynamical refinements give 
better values of 0.05-0.1 as expected, but there are relatively few codes available 
for doing this and they are not particularly user friendly.) For thin regions the im-
age is dominated by strong scatterers, but in thicker regions the smaller string po-
tentials (averaged potential along the beam direction) will dominate so lighter at-
oms can be determined as illustrated in Figure 6. 

 

 
 

Fig. 6. Example of solving a structure (Ga,In)2SnO5 using HREM (left) to find the heavy 
atoms, direct methods (center) to find the oxygen atoms from regions of about 20nm thick-
ness with the structure refined using neutron diffraction based upon the initial approxima-
tion to the positions shown on the right.  

Summary 
 
Many methods now exist for solving the phase problem, either based upon 

rather precise and accurate formulations of the imaging/diffraction problem, or 
approximations which work albeit were formulated under different assumptions. 
While these remain active areas of research, there are several commercial or freely 
available codes for extracting the phase information available. 

However, it is appropriate to end on a word of caution, as there is a long history 
of over-aggressive interpretation of data from electron microscopes over the years. 
Human beings are trained to interpret images in a particular fashion; if it is dark 
then in transmission the object is probably thick, if it is light it is thin. One should 
always remember that this is not true with dynamical diffraction; a nanoparticle 
can appear dark in one image and when tilted appear light. 

The same holds for recovery of phase information, and one should always ask 
how accurate and representative is the information, what are the artifacts and to 
what extent should the data be interpreted. So long as one does not interpret 
atomic images more precisely than 0.1-0.2 Angstroms one is safe, but beware! 
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Abstract   Precession Electron Diffraction has become an increasingly popular 
method of obtaining crystallographic data, and may well replace older methods 
such as selected area diffraction or microdiffraction. While a full model has to in-
volve a dynamical calculation, some approximations give some indication how the 
results vary as a function of thickness and precession angle. This note reviews 
some of the basic models, their advantages and failures as well as some of the 
open issues. 

Introduction 
 
Over the last few years Precession Electron Diffraction (PED), a technique for 

acquiring electron diffraction intensities, invented in 1994 by Vincent and Midg-
ley [1] has started to emerge as a viable technique for determining structures based 
solely upon the intensities, and/or with some assistance from crystallographic 
phases determined using HREM or similar techniques. An incomplete list of refer-
ences is [1-51]. It was clear from the first attempts to use the method coupled with 
direct methods that it gave remarkably better results than conventional diffraction 
techniques except in relatively special cases such as surfaces where the diffraction 
intensities are very close to kinematical. Hence the quandary; electron diffraction 
can only be properly be described using dynamical diffraction, but tools based 
upon a kinematical formulation work. Why? While the detailed answer to this is 
still not fully understood, many of the details are and I will here briefly describe 
the main models along with their advantages and limitations. 

Kinematical Model 
 
The kinematical model has to be mentioned as it is the simplest. The result one 

gets is that the intensities are proportional to the square of the crystallographic 
structure factor. Unfortunately the method has only a very limited relevance as an 
accurate model, as illustrated in Figure 1, failing by 10nm thickness. 
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Fig. 1 Comparison of kinematical intensities (y axis) versus full dynamical calculations (x 
axis) for different thicknesses, with the R1 shown. 

Blackman Model 
 
The Blackman model [52, 53] makes the assumption that the integration over 

angles can be considered as equivalent to a complete integration of a two-beam 
diffraction problem for all possible angles. In more detail, the intensity for a given 
reflection can be written as the integral of a Bessel function: 

∫=
gA

dxxJtI
0

0  )2()(  2
g

g
tA

ξ
π

=

Where ξg is the standard extinction distance which scales inversely with the 
structure factor and t is the thickness. The result one obtains is that the intensity, 
for a relatively thick crystal, scales directly as the crystallographic structure factor; 
for a thin crystal it scales as the square of the structure factors. While this is again 
a useful, simple approximation which has been sometimes used and is better than 
kinematical, there are several fundamental problems with it: 

a) It neglects most dynamical diffraction effects, as the two-beam model really 
only applies for specific orientations. 

b) It neglects the fact that in a precession experiment only a limited range of 
angles are used. 

Unfortunately it is not very accurate, as illustrated in Figure 2. 

Fig. 2. Values of the R1 from a Blackman model versus a full dynamical calculation (y-axis) 
as a function of thickness along the x-axis. 
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Methods Based upon Lorentz-type Corrections 
 
From the earliest days of PED a different approach has been to try and separate 

the contributions associated with the integration over angle and dynamical diffrac-
tion effects, what has been called a Lorentz correction. In more formal fashion, the 
intensity would be written as 

 
)(*)()( gBgLgI =  

 
where L(g) is an approximate form to take into account the integration range, and 
B(g) is purely a diffraction term, for instance Kinematical or the Blackman equa-
tion. The concept is that one might then be able to precalculate L(g) and remove it, 
thereby obtaining a better form. A simple form for L(g) suggested by Gjonnes [2] 
is 
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Where R0 is the precession scan angle in reciprocal Angstroms. While this is an 

interesting idea unfortunately to date it has not been particularly successful as il-
lustrated in Figure 3. 

 
Fig. 3. Scatter plot of Lorentz-corrected data (y-axis) versus the true values (x-axis) for two 
different precession angles and three different thicknesses. 
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1s Channeling Model 
 
The concept of a channeling approach is to expand the electron wave in terms 

of local orbitals rather than plane waves, e.g. [54-57]. One can then approximate 
by using just the 1s states, which works well for HREM and STEM imaging [58]. 
At least in order of simplicity, this model is an attractive approach. The result of 
the model is “atom-like” features and it has been shown that even though the re-
sults are dynamical, the deviations from kinematical are in fact statistical in char-
acter rather than being systematic [59, 60]. Since both direct methods and refine-
ments are (in principle) stable against statistically random deviations, it is 
therefore true that in some cases on a zone axis these methods will work well. 
Alas, while there may be some relationship to what one finds in a PED pattern, to 
date this approach has not proved to be useful. (I think that there has to be some 
relationship, but so far there is no proof beyond qualitative intuition.) 

Two-Beam Model 
 
The first model to account for at least some of the effects present is a two-beam 

model with a proper tracking of the range of integration. A specific form [27] is 
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is included. This is better, but again not perfect and breaks down for a thickness 
much beyond 10nm as illustrated in Figure 4. 



5 

 
Fig. 4. Comparison of the R1 for a two-beam model versus thicknesses (left) compared to a 
kinematical model (right). Unfortunately while there is some improvement, it is not 
enough. 

Full Multislice or Bloch Wave Methods 
 
Good agreement between experimental and calculated intensities has been ob-

tained using methods where all the dynamical diffraction effects (except fine de-
tails of inelastic scattering/adsorption) are taken into account. These are based 
upon either the multislice method [61-64], a fast numerical integration of the in-
tensities, or Bloch Wave methods [65-67] where a matrix problem is solved. As-
suming that the potential used is the same for the two methods, it is known that 
they give identical results provided that they have been properly coded. 

The approach [13], as illustrated in Figure 5 is to consider all different incident 
beam directions and integrate the final intensity over these, for instance the set 1 
to 8 below. 
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Fig. 5. Schematic of a dynamical simulation. For a range of different tilts a full calculation 
is performed and the results are summed. Specific results for eight illustrative tilts are 
shown; in general 512 to 1024 different values are used. 

Without any additional refinement one can easily obtain an R1 of about 0.1, as 
illustrated below in Figure 6 and 7. 

 
Fig. 6. R1 as a function of thickness in Angstroms using experimental data for 
(Ga,In)2SnO4 both on-zone and precessed. The minimum with precessed data is much 
clearer, and the R1 much lower. 
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 Fig. 7. Plot of measured amplitudes versus multislice calculations for the optimum thick-
ness shown in Figure 6. 

Intensity Ordering 
 
An explanation of why the methods work, which unfortunately slightly begs 

the question of the details of when they will fail is intensity ordering [68]. The hy-
pothesis is that rather than the intensities themselves being simply related to the 
structure factors as in kinematical or dynamical models, instead the order of which 
ones are strong, which are weak is preserved. By inspection this is largely true for 
the plots shown above which plot the kinematical structure factors versus the true 
values. This is a sufficient condition for direct methods to work, indeed in the 
early days of the technique with “by eye” measurement of intensities for x-ray dif-
fraction from film, structures were solved by dividing the intensities into those 
which were strong, those which were of medium intensity and the weak ones. 
Classical direct methods only use the strong intensities, so provided that these are 
representative then Σ2 and similar relationships will be preserved. 

 

Summary 
 
For certain PED has emerged as a powerful tool for solving structures. The in-

tensities are much better behaved than those from zone-axis diffraction particu-
larly if larger tilt angles are used. Unfortunately most simple models to date fail to 
explain fully the dynamical diffraction effects in enough detail so one has to do a 
full calculation. 

Fortunately the PED intensities are not chaotic, but are ordered which is 
enough for direct methods to work and there is now extensive empirical evidence 
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showing that this approach can be used to obtain an initial structure for later re-
finement either (or both) from powder x-ray data or by using a dynamical ap-
proach.  

What remains as a problem is how to refine the structure, or perform structure 
completion – in most respects the later is a more significant issue as structure 
completion is in many respects why direct methods work. The large R1 values 
with kinematical models are problematic. In principle one might be able to use a 
two-beam model as an improvement upon kinematical in a refinement as implied 
by an initial estimate [27] and one can use it to approximately invert a set of inten-
sity data. This might be a viable refinement approach as it would be faster than a 
full dynamical method, and this is currently under investigation. 

There are also other alternatives. For instance, some time ago it was suggested 
by Peng [69] that one could use a quasi-kinematical approach, an idea that may 
well be worth returning to. Alternatively there are ways to exploit the implicit pe-
riodicity in reciprocal space (Brillouin Zone folding) so rather than calculating 
1024 different tilts a much smaller number of Bloch wave calculations is needed, 
perhaps only 1 if chosen judiciously or at most 8 [48]. This could give a 103 im-
provement in speed and might make a Bloch wave refinement viable on a reason-
able computer; full refinements will be unrealistically slow if all points are used. 
This is illustrated in Figure 8 below which compares the results of an accurate 
Bloch wave calculation with 1024 tilts to a much smaller set. 

 Fig. 8. Plot the R1 using a limited number of tilts exploiting Brillouin-Zone folding for dif-
ferent thicknesses (left) relative to a full calculation (left) with a scatter plot of the intensi-
ties on the right. 

Despite these limitations, PED has moved from the early days when it was a 
curiosity to a mainstream tool for electron microscopists to use to determine struc-
tures where real-space imaging methods are problematic, for instance when there 
is beam damage or ambiguities in the interpretation of the images. Even with its 
current limitations the R1 values obtained are in most cases rather better than one 
can obtain with alternative approaches. 
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Abstract   Most organic compounds can exist in different polymorphic forms, 
which differ in properties like melting point, colour, density, morphology and dis-
solution rate. Electron diffraction (ED) is a useful tool in organic crystallography, 
especially if single crystals for X-ray structure determination cannot be grown and 
the X-ray powder diagrams cannot be indexed. ED data can be used e.g. for de-
termining lattice parameters, for proving or disproving structural models, and for 
investigating twins, superstructures, stacking disorder etc.. Because of radiation 
damage, structure solution from ED data is challenging; one example is shown. In 
most cases, electron diffraction is combined with X-ray powder diffraction. Lat-
tice-energy minimisations provide a useful alternative approach. They are applied 
e.g. for prediction of crystal structures, structure solution, structure validation and 
explanation of disorder. In difficult cases, a combination of X-ray powder diffrac-
tion, electron diffraction and lattice-energy minimisations is used (three examples 
shown). Local structures of nanocrystalline and amorphous organic and inorganic 
structures can be investigated by analysing the pair-distribution function (PDF).  

1. Organic polymorphs 
 
Most organic compounds are polymorphic. About 90% of the commercially 

used active pharmaceutical ingredients show different crystal phases (including 
hydrates and solvates). At least 80% of the industrial organic pigments are poly-
morphic (not counting hydrates and solvates). The number of known polymorphs 
depends on the time and effort spent on the polymorph screening. For most or-
ganic compounds, no search for polymorphs has ever been done. 

The polymorphic form has a strong influence on the solid-state properties, in-
cluding 
• melting point 
• solubility, dissolution rate and bioavailability (important for pharmaceutical 

compounds and agrochemicals) 
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• colour and other optical properties (important for organic pigments), e.g. the α-
phase of the hydrazo pigment "Pigment Orange 72" is red, the β-phase is or-
ange, and the γ-phase is brown. 

• density (important for explosives) 
• morphology (important e.g. for filtration and drying processes) 
• mechanical properties (important e.g. for tabletting) 

Polymorphic forms can be patented like new chemical entities. 
For all commercial pharmaceutical compounds, the polymorphic forms must be 

known; and the polymorphic form must not change during production and storage. 
If the crystal structure of an organic compound is known (or predicted by cal-

culations), crystal-engineering can be used to synthesise new compounds (or a 
mixed crystal) with desired solid-state properties. 

 
 

2. Determination of organic crystal structures by 
electron diffraction 

 
The determination of organic crystal structures from electron diffraction (ED) 

data is very challenging, because the electron beam causes radiation damage, 
which hinders the measurement of accurate reflection intensities. Effects of dy-
namical scattering and multiple scattering are smaller than for inorganic com-
pounds, but still present.  

Therefore, in most cases, electron diffraction is combined with other methods, 
especially with X-ray powder diffraction. 

Nevertheless, a few organic structures could successfully be solved from ED 
data. 
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Example 
Pigment Red 53:2, ζ phase: Structure solution from ED data [1] 

N
N

O

Cl

S

CH3

H
O

O
O

Ca
2+

Pigment Red 53:2

2

-

 
 
Pigment Red 53:2 is a hydrazo pigment with about 15 polymorphic and pseu-

dopolymorphic forms having orange, red and brown shades. Hitherto, single crys-
tals could be grown only for a DMSO solvate. 

The structure of the ζ phase was solved from ED data using manual tilting. The 
crystals were twinned. A series of electron diffraction patterns (derived by sequen-
tial crystal tilt around a main axis) consisted of two complementary sequences ori-
ginating from the different twin domains. Subsequent assignment of the obtained 
zones to the two individual domains allowed indexing of the zones and determina-
tion of the lattice parameters. 

The crystal structure was solved by crystallographic considerations, close in-
spection of the diffraction patterns and model building. Two organic ligands were 
placed around the Ca2+ ion in a square-planar coordination. The cross-like inten-
sity distribution in the diffraction patterns pointed to an orientation of this moiety 
at an angle of 40° to the b axis. The exact orientation and position of the moiety 
was manually adjusted to avoid overlap of the neighbouring molecules. The resul-
ting molecular packing could reproduce the cross-like intensity distribution of the 
corresponding electron diffraction patterns, and the structure was chemically sen-
sible. 

The crystal structure was not refined against ED data, because only a small part 
of the reciprocal space could be measured. Hence the structure was refined against 
X-ray powder data by the Rietveld method. For the final structure, ED patterns 
were simulated and compared with the experimental patterns; they showed a good 
agreement, which confirmed the structure. Pigment Red 53:2 crystallises in the 
monoclinic space group P21/n with a = 5.3137(6) Å, b = 24.824(3) Å, c = 
12.477(2) Å, β = 86.043(10)°.  

 



4  

3. Combination of electron diffraction and X-ray 
powder diffraction 

 
Today, crystal structures of organic compounds can be determined from X-ray 

powder diffraction (XRPD) data in an almost routine manner by real-space meth-
ods (see lecture of Bill David), if the powder diagram is of suitable quality and can 
be indexed, and if the molecular formula is (at least approximately) known. Hy-
drates, solvates and counterions do not hinder the structure determination. 

The combination of electron diffraction and X-ray powder diffraction is a very 
valuable approach for structure determination of organic compounds, especially 
• if the X-ray powder diagram cannot be indexed, or if the result of the indexing 

is questionable (which is frequently the case) 
• if the structure solution fails (a rare case) or if the structure is questionable 
• if the crystal structure exhibits special features, e.g. a superstructure or severe 

disorder leading to diffuse scattering. 
Examples of all three cases are presented in section 5. 

4. Lattice-energy minimisations 
 
Lattice-energy minimisations provide a useful complimentary tool to diffrac-

tion methods. Lattice-enery minimisations can be carried out by force-field meth-
ods (faster) or by quantum-mechanical methods (generally more accurate). At pre-
sent, the best method for organic crystals is density-functional theory with 
dispersion correction (DFT-D method) with periodic boundary conditions, like it 
is implemented e.g. in the program GRACE [2], which uses VASP [3,4] for sin-
gle-point pure DFT calculations. 

Lattice-energy minimisations can be used for e.g. 
• prediction of crystal structures without reference to experimental data [5] 
• structure solution on the basis of lattice parameters from ED or XRPD 
• completion of crystal structures, e.g. calculation of side groups or H atom posi-

tions 
• structure validation (see section 6) 
• explaining and understanding crystal structures, disorder, packing effects etc. 
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5. Combination of ED, XRPD and lattice-energy 
minimisation 
 

In difficult cases, electron diffraction should be combined with X-ray powder 
diffraction and lattice-energy minimisation, in order to get more information on 
the crystal structure. 
 

Example 
Perinone pigment: ED used in indexing and space-group determination [6]

O

OO
H H

N N

Perinone Pigment

φ1 φ2

 
 
This example shows the combination of ED, XRPD and lattice-energy minimi-

sation for solving and refining an organic crystal structure. 
The ED pattern allowed us to determine the lattice parameters a, c, and β. The 

remaining lattice parameters b, α, and γ could be determined from the X-ray pow-
der pattern. Solid-state NMR experiments (13C-CP-MAS) showed that the asym-
metric unit contains only one molecule (Z' = 1). Systematic extinctions in the ED 
and XRPD patterns (as far as visible) indicated the possible space groups P212121, 
Pna21 or Pnma. The structure was solved by lattice-energy minimisations using 
the force-field program CRYSCA [7]. Calculations were performed in P212121, 
Pna21 and Pnma, each with Z = 4. The molecule is planar. The positions of the H 
atoms of the OH groups is not crucial for electron diffraction or X-ray powder dif-
fraction, but essential for lattice-energy minimisations. A search in the Cambridge 
Structural Database revealed that the torsion angles φ1 and φ2 are likely to be 
approx. 0° or 180°. Therefore the calculations were run with four different con-
formations (φ1 and φ2 equal to 0° or 180° each). For all low-energy structures, X-
ray powder diagrams were calculated and compared with the experimental powder 
pattern. The lowest-energy structure in Pna21 gave a good agreement. Finally the 
structure was subjected to a Rietveld refinement against synchrotron powder dif-
fraction data. 
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Example 
Pigment Yellow 213 (α phase): ED used for indexing and for proving the struc-
tural model [8] 

N
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OCH3
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CH3

O

O
CH3

H

Pigment Yellow 213  
 
Pigment Yellow 213 is industrially used for water-based car coatings. During 

the synthesis a nanocrystalline brown β-phase is formed. Heating the β-phase as a 
suspension in an organic solvent to about 150 °C for three hours yields the yellow 
α-phase 

The X-ray powder diagram of the α-phase looked promising, but none of the 
indexing trials gave reliabe results. In about 200 recrystallisation experiments the 
crystallinity could not be improved. Synchrotron measurements did not help. Le-
Bail fits did not help either (LeBail fits with different lattice parameters gave simi-
larly good fits). Therefore the triclinic lattice parameters were determined by elec-
tron diffraction, using manual tilting (which is a tedious for a triclinic lattice, and 
left some parameters with inaccurate values). The values were later improved by 
automated diffraction tomography (which is faster and more accurate). The struc-
ture solution from powder data using lattice-energy minimisation was followed by 
a Rietveld refinement; but the Rietveld fit was not convincing. To prove that the 
structure was correct, electron diffraction patterns were calculated and compared 
with the experimental ED patterns, which revealed the structure to be wrong (later, 
we learned that the molecule has an unusual molecular conformation, which had 
never been observed before for similar derivatives; this conformation was ex-
cluded in the lattice-energy minimisations, thus the correct structure could not be 
found. With the correct molecular conformation, the correct crystal structure 
would have been easily found). Finally the structure could be solved and Rietveld-
refined from X-ray powder data using TOPAS.  
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Example 
Pigment Red 170, β-phase: a disordered structure 

N
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O
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H

Pigment Red 170  
 
The β-phase of Pigment Red 170 is industrially used for the colouration of 

plastics. The X-ray powder diagram consists of only about 8 broad lines with 
strange peak shapes (tails to higher 2θ values). About six months of recrystallisa-
tion experiments did not significantly improve the crystallinity. Synchrotron 
measurements did not help either, because the peak broadening originates from the 
sample, not from the diffractometer. Electron diffraction patterns showed strong 
diffuse scattering (This could also explain the strange peak shapes in the powder 
diagram). The ED data indicate a layer structure with stacking disorder. At pre-
sent, we are trying to solve the structure by ED, XRPD and lattice-energy minimi-
sations. Lattice-energy minimisations will also be used to understand and explain 
the stacking disorder and to calculate stacking probabilities and local structures 
(i.e. local distortions from the average structure). 

 

6. Structure validation by lattice-energy minimisation 
 
Crystal structures determined by ED or XRPD (or even by single-crystal X-ray 

diffraction) may be wrong or incorrect, even if the structural model gives a good 
fit to the experimental data [9]. Lattice-energy minimisations provide a useful, in-
dependent method to prove the correctness of the crystal structures. Upon energy 
optimisation with variable unit cell, correct structures should change only slightly, 
whereas incorrect structures lead to a distortions of the molecule and/or of the mo-
lecular packing. This was recently demonstrated [10]: 241 organic structures 
(taken from one issue of Acta Cryst E) were energy-minimised in full, including 
unit-cell parameters, using DFT-D (Program GRACE). The average root mean-
square (RMS) Cartesian displacement of the non-hydrogen atoms was only 0.09 
Å. All RMS displacements above 0.25 Å (6 structures) either indicated incorrect 
experimental structures or special features like disorder. 
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Correspondingly, since a few years we prove all our structures from XRPD 
and/or ED with lattice-energy minimisations using DFT-D.  

 
Example 
Acetolone: Identifying a wrong structure by lattice-energy minimisation [11] 

O

N
H

CH3

O N
H

N
H

O

Acetolone  
 
Acetolone is a well-crystalline powder, which is used as intermediate in the 

synthesis of yellow and orange hydrazo pigments. The crystal structure of ace-
tolone was determined from X-ray powder data. The final Rietveld plot was con-
vincing; the difference curve was almost a straight line; and the structure looked 
sensible in all respect. However, the optimisation with DFT-D revealed that the 
structure was incorrect (RMS cartesian displacement 0.48 Å). The terminal 
COCH3 group had to be rotated by 180° (see arrow). A subsequent Rietveld re-
finement lead to even better R-values. Finally lattice-energy minimisation proved 
this structure to be the correct one (RMS cartesian displacement 0.17 Å). 

 
 

7. Pair-distribution-function analysis 
 
The pair-distribution function (PDF), also called radial distribution function, 

represents the probability G(r) to find two atoms with an interatomic distance r. 
The PDF is weighted with the scattering power of the two atoms and summed over 
all atoms. The PDF is similar to a spherically-averaged Patterson function, but it 
can be calculated for nanocrystalline and amorphous materials as well. The PDF is 
derived by Fourier transformation from a carefully measured X-ray or neutron 
powder diagram. For the PDF, the total scattering is used (i.e. including the dif-
fuse scattering and scattering from amorphous parts). The exact measurement of 
the background is essential. Generally the background is determined by repeating 
the measurement with an empty sample holder. 

Classically, PDF analysis is used to investigate local structures in glasses, liq-
uids, amorphous or disordered inorganic compounds, and quasicrystals. However, 
the PDF can also be used to investigate the local structures in nanocrystalline and 
amorphous organic compounds (but beware: It is not easy to get suitable powder 
data; and the PDF analysis is challenging, too).  
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Example 
Pigment Yellow 213 (β phase): PDF used to investigate the local structure [8] 

The brown β-phase of Pigment Yellow 213 is a nanocrystalline powder, which 
does not show sharp Bragg peaks in the X-ray powder diagram. The PDF analyses 
of carefully measured X-ray powder diagrams indicate, that the β-phase has a co-
lumnar structure with a similar local structure as the α-phase and a domain size in 
the column direction of about 4 nm. 

 
PDF analysis could in principle be used in electron powder diffraction as well 

(e.g. for glasses and amorphous compounds), if the background could be measured 
accurately (which is problematic). 
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