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Saturday, 2 June 2018

8:30-9:00 Introduction to both courses 
  A. Guerri, P. Spadon, E. Davis, J. Hadermann, L. Palatinus,  
  A. Stewart, D. Jayatilaka, P. Macchi

9:00-9:45 Joke Hadermann
  Fundamental Crystallography (essential for TEM users)

9:45-10:30 Lou Massa
  Quantum Crystallography, Electron Density, and the Kernel   
  Energy Method

10:30-11:00 Coffee break

11:00-12:30 Jan Pieter Abrahams
 General theory of diffraction

12:30-14:30 Lunch

14:30-15:15 Jacob Overgaard
  Accurate X-ray diffraction Measurements 

15:15-16:00 Anders Madsen
  Dynamics in crystals in the context of quantum crystallography 

16:00-16:30 Coffee break

16:30-17:15 Piero Macchi
  Atom centered multipolar expansion of the charge density 

17:15-18:00 Simon Grabowsky
  Hirshfeld Atom Refinement

18:00-18:30 Introduction to Erice (Martin Schmidt)

20:00  Sicilian Dinner
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Sunday, 3 June 2018

9:00-10:30 Concomitant Workshops:
  Data treatment for single crystal X-ray diffraction (multiple programs 
  demonstrated); Multipolar refinement of charge density with MOPRO; 
  Multipolar refinement of charge density with XD2016 and MoleCoolQT; 
  Distributed Atomic Polarizabilities with PolaBer; Hirshfeld Atom 
  Refinement (multiple programs demonstrated)

10:30-11:00 Coffee break

11:00-12:30 Concomitant Workshops: 
  Data treatment for single crystal X-ray diffraction (multiple programs 
  demonstrated); Multipolar refinement of charge density with MOPRO; 
  Multipolar refinement of charge density with XD2016 and MoleCoolQT; 
  Distributed Atomic Polarizabilities with PolaBer; Hirshfeld Atom 
  Refinement (multiple programs demonstrated)

12:30-14:30 Lunch

14:30-15:15 Nicolas Claiser 
  Neutron diffraction and spin density multipolar model

15:15-16:00 Maxime Deutsch 
  Neutron diffraction and spin density multipolar model

16:00-16:30 Coffee break

16:30-17:15 Martin Rahm 
  Experimental Quantum Chemistry

17:15-18:00 Dylan Jayatilaka 
  X-ray constrained wave functions part 1

18:00-20:00 Poster Session 1 (odd numbers)
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Monday, 4 June 2018

9:00-9:45 Peter Müller
  Crystal Structure Refinement I

9:45-10:30 Philip Nakashima
  QCBED Lecture 1:  QCBED – A Nexus Between Quantum and   
  Electron Crystallography

10:30-11:00 Coffee break

11:00-12:30 Poster Presentations  •  Rising stars in Quantum Crystallography:
11:10-11:20 Lorraine Andrade Malaspina 
  HAR-ELMO - Fast and accurate Hirshfeld Atom Refinement
11:20-11:30 Emil Damgaard-Møller 
  A charge density study of a linear dialkyl Co(II) complex showing an   
  unprecedented non-Aufbau electronic ground state
11:30-11:40 Max Davidson 
  General-unrestricted extremely localised molecular orbital (gELMO)   
  wavefunctions for Hirshfeld atom refinement (HAR)
11:40-11:50 Jonathan Du 
  Wavefunctions fitted to charge density data – exploring the effects of   
  data quality and obtainable properties
11:50-12:00 Michelle Ernst 
  Bonding in polyiodides
12:00-12:10 Anna Krawczuk 
  Influence of chosen synthons on the polarizabilities of functional groups
12:10-12:20 Alexey Kuzmin 
  Experimental observation of Jahn-Teller distortions in π-conjugated high  
  symmetry systems: C60

n- and [MPc]n- anions

12:30  EXCURSION 1
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Tuesday, 5 June 2018

9:00-10:30  Concomitant Workshops: 
  Data treatment for single crystal X-ray diffraction (multiple programs 
  demonstrated); Multipolar refinement of charge density with MOPRO; 
  Multipolar refinement of charge density with XD2016 and MoleCoolQT; 
  Wavefunction refinement with TONTO

10:30-11:00 Coffee break

11:00-12:30  Concomitant Workshops: 
  Data treatment for single crystal X-ray diffraction (multiple programs 
  demonstrated); Multipolar refinement of charge density with MOPRO; 
  Multipolar refinement of charge density with XD2016 and MoleCoolQT; 
  Wavefunction refinement with TONTO

12:30-14:30 Lunch

14:30-15:15 Bartolomeo Civalleri 
  Periodic systems: models and strategies

15:15-16:00 Paolo Giannozzi 
  Introduction to density-functional theory and the plane-wave   
  pseudopotential method

16:00-16:30 Coffee break

16:30-17:15 Alessandro Erba 
  From Energy and Wavefunction to Advanced Properties of Solids

17:15-18:00 Marcus Neumann 
  Dispersion corrected DFT methods and crystal structure predictions

18:00-18:30 Poster Presentations  •  Rising stars in Quantum Crystallography
18:00-18:10 Francesca Peccati 
  Overcoming distrust in solid state simulations: the case of cell parameters
18:10-18:20 Stefano Racioppi 
  Electronic properties and bonding in azolate based coordination polymers
18:20-18:30 Lucy Saunders 
  Experimental charge density studies of short strong hydrogen bonds (SSHBs)  
  with potential proton migration behaviour on I19, Diamond Light Source
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Wednesday, 6 June 2018

9:00-10:30 Concomitant Workshops:
  Multipolar refinement of charge and spin density with MOLLY-X-N;   
  Multipolar refinement of charge density with XD2016 and MoleCoolQT;  
  Crystal Orbital Calculations with CRYSTAL2017; Periodic DFT   
  calculations with Quantum Expresso

10:30-11:00 Coffee break

11:00-12:30 Concomitant Workshops:
  Multipolar refinement of charge and spin density with MOLLY-X-N;   
  Multipolar refinement of charge density with XD2016 and MoleCoolQT;  
  Crystal Orbital Calculations with CRYSTAL2017; Periodic DFT   
  calculations with Quantum Expresso

12:30-14:30 Lunch

14:30-15:15 Alessandro Genoni 
  Extremely localized molecular orbitals in quantum crystalography

15:15-16:00 Piero Macchi 
  Atomic polarizabilities and dielectric properties

16:00-16:30 Coffee break

16:30-17:15 Julia Contreras 
  Quantum Topology

17:15-18:00 Poster Presentations  •  Rising stars in Quantum Crystallography
17:20-17:30 Rebecca Scatena 
  Electron density and dielectric properties of highly porous MOFs
17:30-17:40 Bjarke Svane 
  Electron densities of organic molecular crystals from powder X-ray   
  diffraction
 17:40-17:50 Daniel Tchoń 
  Application of HAR to incomplete, high pressure data

18:00-20:00 Poster Session 2 (even numbers)
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Thursday, 7 June 2018

9:00-10:30 Concomitant Workshops:
  Multipolar refinement of charge density with MOPRO; Crystal   
  Orbital Calculations with CRYSTAL2017; Distributed Atomic 
  Polarizabilities with PolaBer; Wavefunction refinement with TONTO

10:30-11:00 Coffee break

11:00-12:30 Concomitant Workshops:
  Multipolar refinement of charge density with MOPRO; Crystal   
  Orbital Calculations with CRYSTAL2017; Distributed Atomic 
  Polarizabilities with PolaBer; Wavefunction refinement with TONTO

12:30  EXCURSION 2 
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Friday, 8 June 2018

9:00-10:30 Concomitant Workshops:
  Periodic DFT calculations with Quantum Expresso; Hirshfeld Atom   
  Refinement (multiple programs demonstrated); X-ray constrained   
  extremely localized molecular orbitals

10:30-11:00 Coffee break

11:00-12:30 Concomitant Workshops: 
  Periodic DFT calculations with Quantum Expresso; Hirshfeld Atom   
  Refinement (multiple programs demonstrated); X-ray constrained   
  extremely localized molecular orbitals

12:30-14:30 Lunch

14:30-15:15 Ulf Ryde
  Quantum refinement for biological applications

15:15-16:00 Kenneth Merz
  Quantum refinement for biological applications

16:00-16:30 Coffee break

16:30-17:15 Benoit Guillot
  Experimental charge density studies in biomolecules

17:15-18:00 Birger Dittrich
  Transferable Electron Densities

18:00-18:30 Poster Presentations  •  Rising stars in Quantum Crystallography
18:00-18:10 Alena Vishina 
  Electronegativity in band structure calculations
18:10-18:20 Marcel Vöst 
  On the compressibility of C-H bonds in late transition metal alkyls
18:20-18:30 Erna Wieduwilt 
  Heavy meets light - A systematic study of the bond between hydrogen   
  and heavy elements
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Saturday, 9 June 2018

9:00-9:45 Dylan Jayatilaka
  X-ray constrained wave functions part 2

9:45-10:30 Wolfgang Scherer
  Organometallic bonding (concepts) under pressure

10:30-11:00 Coffee break

11:00-11:45 Franz Giessibl
  Atomic force microscopy – microscopy with ultimate resolution

11:45-12:30 Thomas Elsässer
  Femtosecond X-ray diffraction

12:30-14:30 Lunch

14:30-15:15 Mark Spackman
  Quantum Crystallography and Crystal Engineering: Experimental  
  lattice energies from X-ray diffraction data?

15:15-16:00 Round Table, The Future of Quantum Crystallography introduction  
  by Bo Iversen

16:00-16:30 Coffee break

16:30-17:15 Round Table, The Future of Quantum Crystallography 
  (few short talks) 

17:15-18:00 Joint Closing Remarks

20:00  Farewell Party
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Fundamental Crystallography (essential for TEM users)

Joke A.M. Hadermann
University of Antwerp, Antwerp, Belgium
joke.hadermann@uantwerpen.be

 
Fundamental Crystallography (essential for TEM users) 
 
 
 
 
 
Doing TEM, you will encounter different types of patterns and images. It is impossible to 
interpret these wisely without knowing crystallography. Why are the reflections in exactly those 
positions?  Why is one reflection brighter than another? How does the symmetry in your 
electron diffraction pattern or high resolution image correlate with the symmetry in your 
structure?  

1. Construction of the direct and reciprocal lattice 
How images are formed and the details of diffraction you will see in other lectures in the course 
(if you are in the Electron crystallography course). For this lecture, it is sufficient to explain the 
geometric construction of the reciprocal lattice, to indicate its relation to the diffraction patterns 
of a structure. What you see on electron diffraction patterns corresponds to sections through the 
reciprocal lattice of the studied material.  The reflections can be sharp as in selected area 
electron diffraction patterns or discs with contrast variations inside as in convergent beam 
electron diffraction. You might also be working with Fourier transforms of images.  To 
understand each of these patterns, you need to be aware of how the reciprocal lattice is 
constructed. 
A structure is made up of a lattice repeating itself in direct space. The lattice is decorated with 
atoms, forming a crystal structure. Each lattice point is equivalent (thus has the same atom 
decoration) and parallel directions have equal distances between lattice points. Basis vectors 

can be chosen in different ways, but all lattice points need to be able to be described as 
a linear combination of these three basis vectors  (Figure 1).  Note that for aperiodic structures 
such as incommensurately modulated compounds or quasicrystals you need more dimensions 
than three. In this short refresher, we will not go into those advanced cases. 

 

Figure 1. a) Example of a lattice, with the in-plane basis vectors a and b indicated (left) and valid alternative  unit cells in 
green, and invalid example unit cell in red (right). b) A high resolution HAADF-STEM image on which similarly a valid 
unit cell and the corresponding basis vectors have been indicated. 
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A multitude of planes can be indicated as passing in different ways through the atoms.  These 
planes are labelled with an index (hkl) obtained by marking where the plane cuts the different 
axes (Figure 2a), i.e. at points m, n and p for resp. the a, b and c-axis, reversing them to 1/m 1/n 
1/p and taking the smallest set of integers with the same ratios. For example, if the plane cuts the 
a-axis at x=2, the b-axis at y=1 and the c-axis at c=3, the reverses are 1/2 1/1 1/3 and the index is 
(362).  A single set of parallel planes is indicated by round brackets, (hkl). If you see accolades 
{hkl} it means (hkl) and all planes equivalent with (hkl).   
For each set of planes (hkl) in a structure, you construct the reciprocal lattice point hkl by 
drawing the perpendicular to this set of planes (hkl), and positioning the point at a distance from 
the central beam that is the reverse of the distance d between the planes (multiplied by a 
consistent scale factor for drawing) (Figure 2b). The index of the corresponding reciprocal lattice 
point will be hkl, same number, no brackets. For example, the plane drawn in Figure 2a will 
correspond with a reciprocal lattice point 362. 

 

Figure 2. a) Planes are indexed using their intersections with the axes. b) Construction of reciprocal lattice points. Direct 
space elements are given in blue, reciprocal space elements in red. 

As you have a threedimensional set of planes, you will also get a threedimensional set of points, 
forming a lattice. Also for the reciprocal lattice, parallel directions have equal distances between 
points. At this point in our consideration, all lattice points are still equivalent (an “unweighted 
lattice”), having the same intensity, we just take into account the geometry of the structure and 
the reciprocal lattice. 
Any diffraction technique samples this reciprocal lattice, electron diffraction for example takes 
sections through this reciprocal lattice (Figure 3), and by putting all sections together you can 
then reconstruct the whole reciprocal lattice, with correct distances between the lattice points.  
The sections which we see on electron diffraction patterns are “zones”.  A zone is a collection of 
planes in direct space that have a common direction.  The common direction is called the zone 
axis [uvw] ([ ] indicate a direction, < > indicate several equivalent directions).  A zone  with zone 
axis [uvw] in direct space will result in a set of reflections all lying in the same plane in reciprocal 
space which is therefore indicated as the zone [uvw]. In conventional electron diffraction 
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experiments you can only obtain zones that pass through the central beam (000 of the reciprocal 
lattice), in electron diffraction tomography reconstructions you can choose to see any 
reconstructed zone. 

 

Figure 3. a) Threedimensional lattice of reciprocal lattice points (example is CaF2, space group Fm-3m).The blue planes 
indicate two examples of sections through the lattice, corresponding to the zones [001] and [0-11].  b) Scheme of the 
relation between a [zone] electron diffraction pattern and the definition of a zone as the collection of planes with a 
common direction. Example shows zone [001], which includes (not all planes drawn) a.o. the planes (100), (110) and 
(001).  The corresponding electron diffraction pattern will thus a.o. contain the reflections 100, 110 and 010. 

The basis vectors a*,b*, c* of the reciprocal lattice are vectors with which you can describe all 
lattice points with a linear combination hkl=ha*+kb*+lc*.  Planes with a certain index (hkl) will 
always have the same interplanar spacing for the chosen basis. Thus by indexing diffraction 
patterns you can derive the reciprocal cell parameters. It is again possible to choose different 
bases for describing the lattice. Once you have found a basis (a*, b*, c*, α*, β*, γ*) with which you 
can assign to each reflection an index hkl, with h, k and l all integers, you can calculate from 
these reciprocal basis vectors the cell parameters (a, b, c, α, β, γ) of your unit cell in direct space, 
using the general relations (with V the volume of the unit cell) 

 
(cyclic permutations give similar for b and c). The equations between the three aspects (dhkl, 

(hkl), cell parameters a-b-c and angles between the axes ) that can be found in most 
books on crystallography or TEM. 
To each choice of basis for the structure in direct space corresponds one basis choice in 
reciprocal space and vice versa. The positions of the reflections in the electron diffraction 
patterns are define a unique lattice.  For this unique lattice, different descriptions (bases) can be 
chosen, but the lattice itself does not change because of different choices for the description. 
Transformations between chosen bases can be made using simple matrix relations, with a 
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transformation matrix P.  This P or its inverse can then also be used to transform coordinates, 
indices of reflections, etc.  More details can be found in the International Tables of 
Crystallography, volume A, section 5. 

2. Intensities of reflections 
The previous section explains why reflections in diffraction patterns or Fourier transforms are at 
specific positions, and how indexing (assigning a consistent set of hkl to the different reflections) 
can give you the cell parameters of your structure. While the positions of the reflections depend 
on the positions of the different planes relative to each other, the intensities depend on what is 
the occupation of the different planes.  This will be explained in more detail in the lectures on 
diffraction in general, and can for example be expressed using the structure factor.  The terms of 
the structure factor depend on the scattering factor of the atoms at certain positions, multiplied 
by a factor indicating the position of the atoms (xj, yj, zj) and the reflection (hkl) being 
considered. 

 
Several reflections can have equivalent intensities, and also several sets of reflections can have 
zero intensities. This all depends on the symmetry of the structure. If several terms in this 
equation of the structure factor have the same amplitude, but opposite phase, they will cancel 
each other out, as in destructive interference of waves. If they do not have the same amplitude, 
they will simply strengthen or decrease the overall intensity of the reflection, depending on the 
phase difference between the terms. This relation is the same for the different diffraction 
techniques, but the scattering factors will differ, thus you will get different theoretical intensities 
for X-ray diffraction than for electron diffraction. 
By analysing which extinctions are systematically absent, you can get information on the 
translation symmetry of the structure of your compound. By analysing the symmetry among or 
even within (in CBED) the reflections, you can obtain information on the point group symmetry 
of the structure. To understand this, we first need to go into more detail on these different 
aspects of symmetry. 

3. Point symmetry 
Point symmetry operations leave at least one point unchanged. Thus, inherently, they do not 

have any translation components. There are 10 point symmetry operators, i.e. 1,2,3,4,6,   

, the first five X being simple rotations over 360°/X (e.g. 2 is a rotation over 360°/2=180°), m 

is the mirror plane and the  being rotation-inversion axes, first rotating the object over 360°/X 
and then inverting it. These 10 point symmetry elements can be combined into 32 unique point 
groups. (Again, see International Tables volume A.) 
Point symmetry elements i in a point group can also be represented by “rotation matrices” Ri. 
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The symbols of the point groups are very systematic, with the sequence of the elements in the 
symbol corresponding to the main axes per crystal class.  An overview of this is given in the 
Table 1. As an example, in the tetragonal crystal class, the main symmetry elements lie along the 
c-axis (the fourfold symmetry), a and b (or <a> with <> denoting equivalent directions, and 
<110>.  Thus in any tetragonal point group symbol there will be three positions “...” and if you 
find a 2 on the second position, this means there is a 2-fold axis along the <a> direction. 

 
Figure 4. Overview of the crystal classes, requirements on the cell parameters, symbol notation for this class and 
included point groups. 

4. Translation symmetry 
Besides the translation symmetry that makes each unit cell equivalent to the next, there is also 
translation symmtry connected to the choice of basis and to certain symmetry operators. 
If you choose a centered instead of a primitive unit cell, you will have translation symmetry over 
vectors within your unit cell.  The different centered unit cells are indicated with the letter I, F, 
A, B, C and R and explained in the Table below. 
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Table 1. Centered unit cells. 

Primitive/ 
centering 

Equivalences between positions Reflection conditions on hkl 

P x,y,z none 
I x,y,z; x+1/2, y+1/2, z+1/2 hkl: h+k+l=2n 
F x,y,z; x, y+1/2, z+1/2; x+1/2, y, z+1/2; 

x+1/2, y+1/2, z 
hkl: h+k=2n, k+l=2n, h+l=2n 

A x,y,z; x, y+1/2, z+1/2 hkl: k+l=2n 
B x,y,z; x+1/2, y, z+1/2 hkl: h+l=2n 
C x,y,z; x+1/2, y+1/2, z hkl: h+k=2n 
R x,y,z; x+1/3, y+1/3, z+1/3 (hexagonal axes):  

R (obverse) hkl: -h+k+l=3n 
R (reverse) hkl: h-k+l=3n 

 
A second type of translation symmetry is obtained by combining the point symmetry operators 
with a translation.  This results in screw axes (rotation+translation) and glide planes 
(mirror+translation). For a screw axis Xn, the translation is always along the direction of axis X, 
and the length of the translation vector is n/X. For example a 41 screw axis combines a 90° 
rotation with a translation over ¼ of the unit cell.  For glide planes, the mirror element can be 
lying in any orientation a normal mirror plane can be and its orientation is indicated by its place 
in the symbol (similar to the point group symbols), while the translation vector can be along any 
combination of unit cell axes parallel to the plane, over half of the unit cell (one fourth is also 
possible in case of centered cells), the direction of it used as label.  So for example a b.. glide 
plane in an orthorhombic cell has a mirror operation over a plane perpendicular to the a-axis 
and a translation vector over half of the b-parameter. n would mean a translation over ½ of two 
axes, d similarly but with a ¼ translation vector. 

5. The relation between point symmetry/translation symmetry and reflection conditions 
The importance for a TEM user in making a distinction between point symmetry and translation 
symmetry lies in the fact that the presence of translation symmetry elements causes systematic 
extinctions, as the translation aspect causes a phase shift between different terms in the structure 
factor.  Point symmetry elements do not cause any extinctions.  Thus the point symmetry cannot 
be derived from analysing which reflections are present/absent. 
The lattice centering gives distinct reflection conditions valid for all reflections hkl, and are thus 
called general conditions (see Table 1). Glide planes give reflection conditions which are only 
valid for certain zones in reciprocal space and are thus called zonal conditions, and screw axes 
give reflection conditions only valid along certain directions of reciprocal space and are called 
serial conditions.  The different conditions are tabulated in the International Tables volume A. 
Thus the translation symmetry can be derived from selected area electron diffraction patterns by 
determining which reflections are systematically absent. 
Point group symmetry can instead be derived using the intensities in for example convergent 
beam electron diffraction patterns, as will be explained in a dedicated lecture. 
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6. Bravais lattices 
The unit cell centerings that can be combine with the different classes are limited by simple 
logic.  For example, you cannot have an A-centered tetragonal cell, since tetragonality implies 
that the a and b directions are equivalent, thus that cell should also be B centered. However, for 
fulfillung lattice requirements then it should also be C centered to make all parallel directions 
equidistant, i.e. it would become F.  However, an F centered tetragonal cell can be reduced to an 
I-centered tetragonal cell. Thus we eliminate the possibilities A, B and F...and so on.  The 
leftover possible combinations are given in the Table 2 below and are called the Bravais lattices. 
These are given in the conventional settings.  Sometimes researchers publish using non-
conventional settings, such as monoclinic I when they have a good reason for this (for example 
for easy comparison to other structures). 
Table 2. Bravais lattices 

Crystal 
Class

Bravais 
lattices

Triclinic P
Monoclinic P, C 
Orthorhombic P, C, I, F 
Tetragonal P, I 
Trigonal P, R 
Hexagonal P
Cubic P, I, F 

 
7. Space groups 
When combining all possible point group elements with translations (centering as well as 
symmetry elements containing translations), this results in 230 unique space groups. Again, 
different settings are often possible for one space group. Each space group is derived from the 
Space Group symmetry of a Bravais lattice, by decreasing the symmetry through replacements of 
rotation axes and mirror planes by rotation inversion axes or screw axes and glide planes 
respectively, or just simply eliminating the symmetry element altogether. There are clear group-
subgroup relations between the space groups, which go beyond the scope of this short refresher, 
but are very useful when studying phase transitions. During the lecture, I will explain what is the 
information contained in the space group tables. This can also be found in the International 
Tables volume A themselves, or in the teaching edition volume A1. If you do not have the 
Tables, you have no use for this explanation, therefore I do not include this in this page-limited 
set of lecture notes. 

8. Symmetry of selected area electron diffraction patterns, high resolution transmission 
electron microscopy images and convergent beam electron diffraction patterns. 

Selected area electron diffraction patterns are sections through reciprocal space, not projections, 
thus the symmetry corresponds to the symmetry of that specific section. It is only two 
dimensional symmetry and also suffers from Friedel’s Law, which adds an inversion centre to 
any selected area electron diffraction pattern. Therefore reflections hkl are always equivalent in 
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amplitude with reflections –h-k-l.  For example, if you have a section which has 3-fold symmetry 
in the weighted reciprocal lattice, the addition of the inversion centre will give it 6-fold 
symmetry in the selected area electron diffraction pattern.  Therefore caution needs to be 
applied before making any conclusions whatsoever straight from selected area electron 
diffraction patterns about symmetry elements that do not cause systematic extinctions. In the 
International Tables volume B (a different volume for once), tables can be found with the 
equivalence relations between the different reflections for each space group.  Those tables do not 
take into account the inversion symmetry caused by the diffraction character, this you need to 
add yourself. You can also derive these relations using the rotation matrices Ri of the different 
symmetry elements present in the space group, as h’=hR will have the same amplitude as h. 
High resolution transmission electron microscopy images are projections and the symmetry of 
these images corresponds to the projected symmetry along the zone axis of view.  For the main 
directions, the symmetry of the projections can be found in the International Tables volume A, 
in the space group tables.  These symmetries are plane group symmetries, i.e. contain only 
symmetry elements staying within a plane. There are only 17 plane groups: p1, p2, pm, pg, cm, 
p2mm, p2mg, p2gg, c2mm, p4, p4mm, p4gm, p3, p3m1, p31m, p6, p6mm.  With the plane 
groups we talk about mazes instead of unit cells, p is a primitive maze, c a centered maze (in a 
plane there is only one type of possible centering), 1,2,3,4,6 rotation axes with axis perpendicular 
to the plane of view, m a mirror plane perpendicular to the plane of view and g a glide plane 
perpendicular to the plane of view.  
Convergent beam electron diffraction patterns contain threedimensional symmetry through the 
complex dynamic scattering interactions, as will be explained in a different lecture.  Point group 
symmetry can be derived from such patterns.  
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Quantum Crystallography, Electron Density, and the Kernel 
Energy Method

Lou Massa
Depts of Chemistry & Physics, Hunter College & the Graduate School, CUNY,  
New York, USA
lmassa@hunter.cuny.edu

Quantum Crystallography, Electron Density, and the Kernel Energy Method# 
Lou Massa* 
Departments of Chemistry & Physics 
Hunter College & the Graduate School, CUNY 
*E-mail: lmassa@hunter.cuny.edu
 
 
1. Introduction 
Here is a suggestion, obvious but also of some importance. Applied to Quantum Crystallography 
(QCr),1-13 the kernel energy method (KEM)10-24 implies the use of the electron density to extract 
the complete quantum mechanics of a crystallized biomolecule. The possibility of such study is 
much to be desired, because for truly huge molecular systems it would allow the illumination of 
important biological problems by using the power of true ab initio quantum mechanical 
explanation.  
Most crystal structures are brought to final resolution based upon a model equivalent to a sum of 
spherical atomic electron densities (the independent atom model (IAM)). That molecular 
density is:   

spherical
IAM

1

n

i
i

ρ ρ
=

= ∑                                   (1) 

The atoms are positioned so that the crystallographic agreement factor (R-factor) is minimized:  
2

. .[ ( ) ( )]calc obsR w F Fδ δ= −∑ K
K

K K 0=

d r

                 (2) 

where the structure factor is defined as,  
3( ) ( )iF e ρ= ∫ K.rK r ,                    (3) 

where K is the X-ray scattering vector in reciprocal space with components {h, k, l}.                              
Recognizing that bonding will introduce nonspherical aspects to the molecular density, a better 
density is obtained by a chemical model which incorporates nonspherical density terms. Thus 
non-spherical multipole representations of the density have been proposed and in use for over 
four decades.25-31 Hansen and Coppens proposed the now oft used model, which given in 
standard notation reads:28,29 

max
3 3

0
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l l

atom core core valence valence l lm lm
l m l

P P r R r P Yρ ρ κ ρ κ κ κ ± ±
= =−

= + +∑ ∑ θ ϕ

0

l

core valence lm
m

P P P N±
=

+ + =∑ core

,        (4) 

where the total number of electrons of the atom or ion N is broken down into sub-populations 

( ), and where ρ and valenceρ  are the normalized densities of the free 

atom or ion, and Rl are exponential radial functions. The third (valence density) term provides 
the non-spherical deformation flexibility. This model results in better molecular structures and 
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better electron densities. High quality crystals and the data collection at low temperatures 
followed by crystallographic refinement within this model yielded high resolution electron 
densities that account for the topography of chemical bonding.32-39  
An example of a multipole deformation density (defined as the difference between a 
promolecular density obtained by superposing spherical atomic densities and a multipolar 
density) is given by that shown in Fig. 1. The figure, obtained from Ref. [32], contains contours of 
a nonspherical deformation density in a peptide plane.  Non spherical aspects of the density are 
evident in this image.  
The use of the multipolar representation of the density has become a highly regarded (standard) 
crystallographic technique.29,30,33 What more can be asked in the way of improvements? One 
possible answer would be to extract the complete quantum mechanics from X-ray scattering 
data.12,13 Is there a direct connection between X-ray structure scattering data and the quantum 
mechanics of molecules? Yes, if care is taken to ensure mathematically that the density obtained 
from crystallography is related to a wavefunction. That relationship is formally called N-
representability, which, symbolically, can be written as:  

(1,1') * 2 3... (1,1')d d dN fρ ↔ Ψ Ψ ←∫ ,                 (5) 

where the reader is asked to notice the bijective relation between ρ and Ψ that does not apply for 
an arbitrary function f. Stated differently, a density matrix is N-representable if it can be shown 
to arise from an antisymmetric N-body wave function. In particular for:  

  ,                     (6) †
1 ( ) ( )trρ = Pψ r ψ r

if P2 = P, it may be shown that ρ1 is single determinant N-representable.40 Thus a description for 
extraction of single determinant quantum mechanics from X-ray scattering may be summarized 
as follows:  

2 =P P                      (7) 
tr N=P                      (8) 

( ) ( )tr F=Pf K K                     (9) 
in which case Eq. (6) delivers a density which is both N-representable and consistent with the 
experimental scattering data.40 
An example of the theoretical quantum crystallography program just described was an 
application to the Beryllium crystal.41 Using simply two basis functions to represent the valence 
orbital of the Be atom , and the frozen core density from the X-ray tables, the highly accurate 
data of Larsen and Hansen were used as constraints to fix the single determinant N-
representable density.42 The result was one of high accuracy as measured by the remarkably 
small R-factor of 0.0018. Furthermore, the errors of the density fall exactly within the statistics 
expected for a random distribution of errors, taking into account the full range of scattering.41  
#Patterned upon a paper submitted to Acta Cryst by Walter Polkosnik, Chérif F. Matta, Lulu Huang, Lou Massa ( now 
under review). 
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2. A new idea for proceeding to biological molecules 
It is seen therefore from the above mentioned beryllium example that true quantum mechanics 
can indeed be extracted from the X-ray scattering experiment. However, the beryllium 
“molecule” implies a very small number of electrons. One may ask, what about the case of very 
large biological molecules? Will exactly the same techniques applied to beryllium serve equally 
well for thousands or many tens of thousands of atoms, as may occur in biological molecular 
systems? Can one then, in the same way, find P2 = P that solves the X-ray refinement problem?  
The variation of P against the measured structure factors F(K) becomes impractical as the 
number of atoms becomes large. For large molecules the number of matrix elements of P 
increases with the square of the number of atoms, while the number of X-ray data tend to 
increase directly with the number of atoms. Clearly there comes a crossover point with 
increasing numbers of atoms such that insufficient X-ray data are available to deliver 
unambiguously an N-representable density matrix.  
A practical way to avoid the dilemma posed by an ever increasing number of atoms is to invoke 
the Born-Oppenheimer approximation. This asserts that the quantum mechanical electronic 
structure can be computed at fixed nuclear positions so long as they are known. But the number 
of X-ray scattering data are sufficient to determine the nuclear positions, so long as the problem 
is not compounded simultaneously with the many more parameters demanded by a 
representation of the electron density. Thus it is suggested here to take the nuclear coordinates 
from the experimental X-ray scattering data and calculating the corresponding electronic 
structure by the methods of quantum chemistry.43-46 
Once the problem of extracting quantum mechanics from the X-ray scattering data is divided 
into experimental determination of the atomic coordinates and the theoretical calculation of the 
electronic structure, another problem is confronted. And that is that the molecular quantum 
mechanical computational burden rises as a high power of the number of basis functions used to 
expand the molecular orbitals. Obviously for large enough molecules, this burden becomes 
prohibitive. However, another mathematical solution presents itself in the form of the quantum 
Kernel Energy Method (KEM), which we now discuss. 

3. The Kernel Energy Method (KEM) 
The KEM makes possible the calculation of true ab initio quantum mechanics of large biological 
molecules of practically any size with high accuracy.14 This method proceeds by mathematically 
cutting a large molecule into practicable smaller pieces called “kernels”. As an illustrative 
example, consider the tripeptide Ala-Phe-Thr. This molecule will be broken into three single 
kernels each a separate amino acid, so the single kernels are Ala, Phe, and Tyr. In order to 
account for the pairwise interactions between these kernels, calculations are also performed on 
double kernels. In this case these will consist of two chemically contiguous kernels (Ala-Phe) and 
(Phe-Thr) and one non-contiguous double kernel (Ala...Thr). The kernels are calculated in the 
exact geometry as extracted from that of the full target molecule with appropriate capping by 
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hydrogen atoms to satisfy the dangling bonds (the contributions of these hydrogens cancel in the 
KEM formulae). Since these kernels are calculated as individual molecules, and importantly, the 
calculation is inherently parallelizable with possible gigantic saving in computational efficiency. 
The kernels are made by cutting across single bonds in the large molecules, and hydrogen caps 
are added to the kernels to preserve the valence of the atoms at the position of the cuts. As an 
example for a property that can be predicted from KEM, the total energy of the above tipeptide 
is reconstructed from the energy of the kernels according to the formula:     

( ) ( )total Ala Phe Thr Ala Phe Phe Thr Ala Thr
(KEM)

Energies of kernels Sum of the energies of pairwise  interactions

E E E E E E E− −= + + + Δ + Δ + Δ L1 4 44 2 4 4 43 1 4 4 4 4 44 2 4 4 4 4 4 43
,            (10) 

where the first summation is of the energies of the single kernels (the separate amino acids in 
this case) and the second summation is over all interaction energies of pairs of amino acid 
residues. The pair-wise interaction energy, say for the first double kernel (Ala-Phe), is written,  

( )Ala Phe Ala Phe Ala PheE E E E− −Δ = − + .                       (11) 
When this last equation is substituted into the expression for the full KEM energy one obtains 
(in this case): 

( ) ( )( )Ala Phe Thr Ala Phe Phe Thr Ala Thr Ala Phe Thr3 2E E E E E E− − − −= + + − − + +L E ,        (12) 
and in general, for a molecule broken into m single kernels, the KEM energy is written: 
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= = + =

= − −∑ ∑ ∑                               (13) 

This is the working equation for the KEM.  
The KEM approximation has been proposed as a means to obtain fast approximations for 
electron densities and the underlying and related density matrices.12,13,24 
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These last three equations represent what may be called the extraction of the complete quantum 
mechanics from the measured X-ray scattering. The position of the atoms is taken from the 
crystallography experiment and the electronic structure is calculated by invoking the Born-
Oppenheimer approximation followed by the kernel energy method. The quantum mechanics is 
complete in the sense that all quantum operators of normal interest will have expectation values 
obtainable from the density and density matrices that have been calculated in the KEM 
formalism. For example the full molecule electronic energy is of the form 

1 2
ˆ ˆ ˆ

ext eeE T V Vρ ρ ρ= + +                               (17) 
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which requires ρ2, ρ1, and ρ as indicated in the last equation.    
Properties of considerable current interest are the total molecular electron density and the total 
molecular electrostatic potential (ESP) of large macromolecules of biological and nano-
technological interest. KEM has been shown to be capable of delivering accurate electron 
densities sampled at bond and ring critical points (BCPs, and RCPs) in addition to the complete 
localization-delocalization matrix47,48 of a graphene nanoribbon.22 The method has been 
extended to estimate electric field-induced changes in the properties (i.e., response properties) of 
a finite graphene flake.23 There is, thus, strong evidence supporting the confidence in that the 
extension of KEM to estimate the total molecular electron density and the total molecular 
electrostatic potential is only awaiting automation, a current interest in our group.  
The KEM approximation to the electron density scalar field of a macromolecule can be 
numerically achieved from cubes of kernel and double kernel electron densities manipulated 
point-by-point according to Eq. (16). This KEM density can be inserted in the expression for the 
molecular electrostatic potential49-54 in which the first term comes from the known molecular 
structure:  
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KEM
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R r
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,                             (18) 

and where in the first sum the terms with Ri = r are eliminated. The reconstructed electrostatic 
potential (VKEM(r)) can alternatively be obtained from cubes of ESP of single and double kernels 
manipulated point-wise using an equation of the same form as Eq. (16).  
The KEM has been of tested accuracy over a wide range of biological and other large molecules 
(such as graphene) and has been shown to be accurate and within a range of commonly used 
chemical models.14  Importantly, Eqs. (14-16) imply that the KEM is implementable within any 
chemical model of choice for the particular problem at hand. It is not inherently restricted to any 
form of the wavefunction such as a single determinant form. 
For a non-single determinant chemical model, the density matrix ρ1 of Eq. (15) is expected to be 
accurate but is not mathematically required to be N-representable. This property however can 
be imposed on the density matrix ρ1 by casting it into a natural orbital (NO) representation.55,56 
The process for obtaining the natural orbitals involves diagonalizing the density matrix for the 
full molecule. This is constructed from the “fragment” density matrices of the kernels and double 
kernels indicated in Eq. (15).11 The basis set for the full molecule is obtained by collecting 
together the basis functions from all kernels which constitute the full molecule. If we call the 
basis set for the full molecule ψ, then as in Eq (2) the density matrix for the full molecule is:  

,                     (19) 
where ψ(r) is a column vector of atomic orbital basis functions, and where a direct product is 
implied with its complex conjugate transpose (ψ†(r’)). In this last equation R is the “augmented” 
matrix11 constructed by placing the density matrix of the kernels and double kernels into their 
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appointed positions defined by the full molecule basis ψ.  
Thus, in an augmented density matrix (ADM), the density matrix of every kernel ri or double 
kernel rij (which are all of smaller dimension than for the full molecule density matrix R) is 
placed within their respective positions as submatrices of the full molecular density matrix: 
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and 
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where rk is the density matrix of the kth kernel, Rk is the augmented density matrix of the kth 
kernel, and where rij is the density matrix of the ijth double kernel, Rij is the augmented density 
matrix of the ijth double kernel, and where n is the size of the basis set of the full molecule ψ(r). 
In Eq. (21), an example is shown whereby double kernel matrices denoted by (rij)AB = [(rij)BA]† 
have elements that multiply the bases functions in kernel A by those in kernel B (interaction 
matrix elements), while (rij)AA or (rij)BB multiply basis function within a give kernel (self matrix 
elements).  
The full molecule density matrix R is approximated from the augmented matrices of the single 
and double kernels according to the usual KEM formula, that is: 

 ,                             (22) 
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where m is the number of single kernels.  
The KEM natural orbitals are then obtained from the unitary matrix which diagonalizes RKEM. 
The eigenvalues of RKEM are the occupation numbers that weight the importance of each natural 
orbital in the expansion of the density matrix for the full molecule. Thus, 

*
1( , ') ( ') ( )k k k

k
wρ φ=∑r r r r                                (23) 

where each φk is a natural space orbital belonging to an eigenvalue (occupation number) wk scaled 
such that they satisfy simultaneously: 

                                                              (24) 
and, 
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k
k

w N=∑                                                               (25) 

and where N is the number of occupied natural orbitals.  
According to Coleman’s theorem57 the density matrix ρ1 is N-representable as long as the 
eigenvalues of the occupied natural orbitals satisfy Eqs. (24) and (25). The corresponding N-
representable density ρ is simply the diagonals of ρ1. Following Müller,58 a physically useful 
approximation to ρ2 can be defined which by integration over the coordinates of electron 2 
delivers ρ1 as is required. The Müller-like construction is:  

1 1
2

1 1

(1,1') (1, 2 ')
(1, 2,1', 2 ')

(2,1') (2, 2 ')

ρ ρ
ρ

ρ ρ
= ,                (26) 

where,  
*

1(1,1') (1') (1)k k k
k

wρ φ=∑ φ .                               (27) 

Notice that 2ρ  is analogous to a single determinant expression but differs in that the off 

diagonal terms  1ρ  contain a square root of the eigenvalues, kw , rather than the eigenvalues 
themselves, wk, as occurs in the natural orbital expansion of ρ1. This however delivers the 

required form for ρ1 by integration using the form of 2ρ  as given by Eq. (26), in which case: 

2 12' 2
,1', 2 ') 2 ( 1)d N(1,2ρ ρ

→
= −∫ .                              (28) 

 
4. Conclusions 
The principal point of this paper is that a practical way to extract the true quantum mechanics of 
biological molecules from the X-ray scattering experiment is to invoke the Born-Oppenheimer 
approximation. In so doing one takes that atomic structure from the X-ray experiment. One 
recognizes that KEM delivers ρ2, ρ1, and ρ and subsequently F(K), the structure factors. Having 
the X-ray atomic structure allows creating the kernels mathematically and subsequently 
calculating their ab initio electronic structures. Having the electronic structures of the kernels 
allows the electronic structure of the full molecule to be reconstructed with KEM accuracy 
according to the its formulas for ρ2, ρ1, and ρ [Eqs. (14-16)].  
It follows that all expectation values for the full molecule are calculable from these density 
matrices as shown for the energy, as one example [Eq. (17)]. And finally if the X-ray structure 
factors {F(K)} are calculated with the KEM density ρ(r) [Eq. (3)] that gives the ultimate 
confirmation of the accuracy of the quantum mechanics obtained from the experiment.  
Fig. 2 summarizes the conceptual connection of KEM within the context of quantum 
crystallography. The figure is to be read starting from the X-rays source that yields the 
diffraction data that is used to generate the full molecular geometry. The molecule is then 
partitioned into kernels, sufficiently small to be subjected to quantum chemical computation – 
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each kernel (or double kernel) separately (and hence highly parallelizable). The calculated 
density matrices of the kernels are then combined to yield those of the full molecule according to 
Eqs. (14-16). The KEM density can then be Fourier transformed to deliver calculated structure 
factors. The calculated and experimental structure factors can be compared by a crystallographic 
R-factor. 
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Figure1. Multipolar deformation electron density in the plane of a peptide bond (N4-C13-O4) obtained by Lecomte et 
al. 32 (Left) The experimental density with contour interval of 0.05 e.Å-3 and where solid lines indicate positive contours 
and dashed ones indicate negative contours. The nodal contour has been omitted. (Reproduced with permission of the 
copyright holder. © 1992 American Chemical Society). 
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Figure2. A conceptual sketch of the quantum crystallography/kernel energy method (QCr/KEM) scheme from X-rays 
scattering by the molecule to its fragmentation into pieces passing through the quantum mechanical KEM 
reconstruction of its density matrices. The reconstructed density and calculated F(K) can then be gauged against 
experiment. (Reproduced with permission of the copyright holder from Ref. 59 © 2017 Springer). 
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1. What characterizes a good data set 
In order for us to be able to discuss data quality, as we want to do in this presentation, we first 
need to agree on what the characteristics of such data are and how we then proceed to measure 
it.(Herbst-Irmer & Stalke, 2017) We want to have a data set with resolution that extends far 
beyond the normal values used in your typical structure solution, and this means d-spacing less 
than 0.5 Å, if at all possible. The aim with doing a charge density determination, which is the 
primary reason that researchers want to have very accurate data, is to study the chemical 
bonding.(Koritsanszky & Coppens, 2001, Stalke, 2016) Chemical bonding is strongly associated 
with the valence electrons, and these are spatially diffuse compared to the compact core 
electrons, and given the reciprocal connection between the diffraction and physical spaces, one 
would think that we do not really need high resolution data at all but could do with the low angle 
data. However, there are at least two main reasons to go to great lengths and measure to very 
high scattering angle; firstly, we need to separate the thermal smearing of the electron density 
from the redistribution due to chemical bonding. As will be mentioned later, it is in certain cases 
possible to obtain complementary information from neutron single crystal diffraction about the 
atomic displacement parameters, which mathematically describe the thermal smearing, but 
often this is not an option. Thus, the next best thing is to model the atomic motion using the 
core electrons alone, which are the sole contributors to the high angle data. Secondly, as you 
hear in another presentation, the multipole model includes up to 25 additional parameters per 
atom, so the required number of observations to maintain a ratio of 1:10 for parameters to 
observations is much higher.  
To achieve this we may utilize the strengths of synchrotron radiation and also very low 
temperatures. We will discuss other needs, as well as the importance of precision and accuracy.  

2. Data collection 
The collection of accurate data will be the main topic of this talk. Besides, of course, choosing 
the crystal gives us some freedom, most of us are not able to choose from a large range of 
instrumental setups but are in fact restricted to the one that for one reason or another has been 
chosen for your facility, and this is what you have to use. Often your local crystallographer will 
be a dedicated scientist who has kept the instrument in impeccable working condition, and you 
will still be able to obtain very good data. However, there is a rapid technological development 



38 Erice International School of Crystallography • 52nd Course, 1-10 June 2018

these years in X-ray equipment, both in the sources and the detectors, and we will here discuss 
the different types and their advantages, using wherever possible examples. 

a. The crystal 
We are faced with many questions when starting a data collection, beginning with the choice of a 
suitable crystal. There is a saying that in one of several alternative variations goes like this: 
garbage in, garbage out. For accurate crystallography, this is very true, while standard structure 
solution is much less sensitive to the data quality. It can however not be stressed enough how 
important it is to understand that your study of these very tiny details of the charge distribution 
starts with the choice of crystal. There is no way to get accurate and good data from a poor 
crystal. However, not all interesting samples are stable in ambient conditions, and it may be 
necessary to protect the crystals from heat, air or moisture all the way from crystallization 
glassware to the diffractometer. In the study of unusual chemistry and chemical bonding, 
compounds are often quite sensitive to the atmosphere and will quickly react and decompose. 
You can avoid this by mounting crystals in glove box or the X-temp2 cryo-mounting device 
developed in Göttingen.(Kottke & Stalke, 1993) 

b. X-ray sources 
Obviously, we need an X-ray source to carry out the experiment. An in-house X-ray source did 
not change much from its infancy a century ago and until a couple of decades ago; the sealed-
tube source. Of course, its lifetime was improved and cost lowered, but the intensity was not 
really improving. The rotating anode improved the brilliance of the beam (measured in 
photons/s/area) and they are still very good in-house sources. Not so many years ago the low-
powered micro-focus source was developed, which provides high brilliance but running now at 
about 50 W. 
Only recently came then the liquid-metal jet instruments(Hemberg et al., 2003) developed by 
Excilium in Sweden. As the word suggests they have a liquid stream of metal circulating and the 
electron beam hits this. A low-melting metal is required as it runs at close to room temperature, 
so gallium with or without indium are preferred. They provide wavelengths of close to that of Cu 
for Ga and even shorter for In. However, at the time of writing these notes no charge density 
experiments have yet been made with these instruments. 
The other option is to choose a dedicated synchrotron source. The tunable energy and the 
massively increased beam-brilliance are the main benefits of applying months in advance and 
traveling to another country to do an experiment. As the example in this talk suggests, for 
heavily absorbing samples, using a synchrotron source may in fact be the only way to obtain 
usable data. However, the use of the synchrotron requires that the other components are 
optimized for its specific characteristics, such as wavelength variations and extreme countrates. 
Especially the detector may not be able to cope with this, as we will discuss.  
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c. X-ray detectors 
Most modern diffractometers are equipped with CCD-based detectors, which became widely 
available two decades ago. It naturally represented a massive improvement for the users to 
switch from collecting data one Bragg reflection at a time to collecting a large angular region in 
one go. The CCD detector is fast with readout times of a few seconds. It uses a phosphor 
material to detect and convert X-ray photons into visible photons. These photons are then 
detected by the electronics, and stored in individual electron wells until they are read. However, 
this technology is hampered by a rather high noise level and the overflow of strong intensities 
into neighbouring pixels. Therefore, the advent of novel pixel-array detectors, which are 
basically arrays of individual detectors is extremely promising, providing virtually noise free and 
instantaneous detection. 

d. Hydrogen atoms & neutrons 
The hydrogen atom constitutes a special problem in the modeling and thus needs special 
attention. Hydrogen has only one electron, and in most cases it is bonded to a more 
electronegative atom removing a substantial part of this electron. Therefore, using X-rays alone 
makes it difficult to determine its exact location and its thermal motion. In many cases, the 
procedure to overcome this is simply to extend the X-H bond distance to match tabulated 
values(Allen et al., 1987) obtained from neutron studies, in which the nuclear positions are 
obtained much more accurately. However, the most accurate is to combine the X-ray data with 
single crystal neutron diffraction data and perform an X-N refinement,(Coppens, 1967, Blessing, 
1995b) in which the pertinent hydrogen parameters are obtained from the neutron data. I will 
also discuss two more recent alternatives, which are the HAR and the SHADE approach. The 
former is short for a Hirshfeld Atom Refinement,(Capelli et al., 2014, Jayatilaka & Dittrich, 2008) 
and involves calculation of aspherical atomic densities based on the Hirshfeld portioning of an 
ab-initio molecular electron density, Fourier transformation of this to new scattering factors and 
subsequent refinement. It has been shown to give X-H bond distances highly similar to neutron 
values, and also in some cases the anisotropic ADPs for hydrogen. On the other hand, 
SHADE(Madsen & Hoser, 2014, Munshi et al., 2008) uses a TLS-analysis of the X-ray derived 
non-H ADPs in combination with a library of known internal frequencies for X-H vibrations, 
and puts this together to give an estimate of hydrogen ADPs.  

3. Data reduction 

e. Data processing 
Once you have collected the data, the next step is to extract the most accurate intensities and 
their associated errors. Using CCD detectors, the standard has been to perform thin slicing of 
the reciprocal space and thus have the Bragg reflections covering several adjacent frames. This 
allows for detailed analysis of the reflection profiles and this is what most software packages by 
default will do. This works especially well for the weak reflections, which are relatively more 
affected by the statistical errors. However, it remains to be shown how well this approach works 
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for the next generation of noise-free detectors, which in combination with synchrotron sources 
give extremely sharp reflection profiles. 

f. Absorption correction 
I will also briefly discuss the correction of systematic errors, such as absorption. Most 
diffractometer software now allows easy indexing of crystal faces, which allows a numerical 
absorption correction. However, the empirical correction(Blessing, 1995a) may in fact be 
competitive with the numerical approach.  

g. Oblique incidence correction 
When diffracted X-rays are detected, it involves the conversion of these high energy photons to 
either a charge or lower energy photons. The number of charges or photons that are generated 
in this process depends on the distance the X-rays travel inside the detecting material. It is easy 
to imagine then that when the incident X-ray is perpendicular to the detector surface, the 
maximum distance it may travel inside the detector is shorter than if it were entering the 
detector at an oblique angle. To take this dependency into account an oblique incidence 
correction needs to be done.(Wu et al., 2002) If uncorrected, the result is that the intensity of the 
high angle data (if the detector is at 2θ close to zero) will be relatively higher than the low angle 
data, and thus the ADPs will be much smaller than their true value. The correction depends on 
the absorption efficiency in the detector at the given energy. 

h. Other issues of different importance 
We are optimizing all actions that we have control over. In all aspects of this type of experiment, 
it remains of utmost importance to work with accuracy and precision. The centering of the 
crystal in the beam, not least when using a small synchrotron beam, is vital. We want to monitor 
reference frames and hopefully use them to scale the crystal or beam decay. Another sometimes 
detrimental effect is ice-formation which in principle should be avoidable, but not always is.  
We may be able to minimize the effect of these effects using post-integration procedures, often 
incorporated into SADABS(Krause et al., 2015) or equivalent programs. 

i. Merging of equivalent reflections and errors 
The higher speed of data collection that has been made possible with stronger sources and faster 
detectors can be used to collect highly redundant data sets. We use these to obtain much better 
estimates for intensities but also for the associated errors. In the beginning of the 2D detection 
era, the derived errors from data reduction were often highly underestimated, but these 
undesirable characteristics have since been cured. Nevertheless, using the reproducibility of 
intensities by calculating rms values allows a much improved error estimation, and this is often 
done in programs such as SORTAV. (Blessing, 1987)  

4. Post refinement analysis 
Having finished the charge density analysis as explained in another talk and workshop, we 
should take a look at how well the data actually matches the model we have constructed. This 
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topic has gained some attention in recent years and tools for detailed analysis of errors have been 
developed.(Zhurov et al., 2008, Henn & Meindl, 2014) This step may in fact reveal some data 
that are extreme outliers (by not matching the calculated model-based values) and it is necessary 
to go back to the raw data to find out if there is a plausible explanation.  
The host of tools that we use for this are explained at this step in the presentation.  
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Introduction 
One of the greatest obstacles when combining quantum mechanical calculations and 
experimental crystal diffraction data is the modeling of thermal motion. Theoretical estimates of 
electron densities are based on ab-initio calculations that exclude nuclear motion, but atoms in 
crystals are always vibrating about their mean positions. Although this motion is lowered as the 
temperature is reduced, it is never completely absent due to the persistence of zero-point 
motion.  In order to compare theory and experiment it has become practice in most 
experimental charge density studies to investigate static charge densities, obtained by 
deconvoluting the nuclear motion. Because most investigators are interested in this static charge 
density, considerably less focus has been put on the modeling of atomic vibrations. This is a pity 
for two reasons: first of all, the atomic vibrations are interesting in themselves, and may tell a 
great deal about the potential energy hypersurface of the atoms and molecules in the crystal and 
thereby about the thermodynamic and mechanical stability of the crystal; secondly, the models 
of the static electron density and atomic vibrations are refined against a common set of 
diffraction data corresponding to the vibrationally averaged density; if either of these models is 
erroneous, correlations will introduce errors in the other too.   
That thermal motion is always present is a fact that must not be disregarded when dealing with 
an  interplay between quantum mechanical models and experimental diffraction data.    

Lattice dynamics  
Some basic physics of atomic vibrations in crystals is needed in order to explain the models and 
methods often applied in experimental charge density studies. The theory of lattice dynamics is 
the basis for deriving the Debye-Waller factor, which describes the reduction of the Bragg 
diffraction due to atomic motion. The lattice dynamical model can be used to derive Debye-
Waller factors from ab-initio calculations, which may then be used in models refined against 
experimental data – in one way or the other. 
A crystal may be considered as one giant molecule. Each atom in the crystal has 3 degrees of 
freedom. With N unit cells and n atoms in each cell, the crystal has 3nN vibrational degrees of 
freedom. The vibrations of atoms are correlated and extend throughout the crystal in travelling 
waves, or phonons. In the theory of lattice dynamics developed by Born and von Kármán, and 
described in detail in the classical book by Born and Huang 1 the equations of motion of atoms 
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are set up assuming periodic boundary conditions. Following the theory as outlined in the 
excellent book by Willis and Pryor 2, the motion of each atom is described by 

 
k labels an atom in the unit cell, and l labels the unit cell. The displacement u(kl, t, q) of the (k, l) 
atom from its equilibrium position r(kl) depends on the wave vector q of the travelling wave. 
The displacement vector U(kjq) describes the maximum amplitude and the direction of motion 
of the (k, l) atom, as produced by the travelling wave of wave vector q. U is independent of the 
unit cell l, because the motion of equivalent atoms (k) in different cells (l) have identical 
amplitude and direction and differ only in phase. This is Bloch’s theorem, and introduces an 
enormous simplification as it allows us to restrict attention to the 3n equations of motion of the 
n atoms of just one cell, rather than the equations of motion of the 3nN atoms in the crystal.  
The frequency ω in Eq. 1 is a continuous function of q, and the dependence of ω on q is called 
the dispersion relation for the propagation direction defined by q. For a given q, Eq. 1 describes 
3n modes of vibration, so that we need N different q-vectors to describe the atomic vibrations of 
the crystal. These q vectors can be chosen to be uniformly distributed within the so-called first 
Brillouin zone, or simply the Brillouin zone. This is the region, centered on the origin of 
reciprocal space and bound by planes drawn as perpendicular bisectors of the vectors joining the 
origin to the nearest reciprocal lattice points.  

 

Figure 1. Dispersion relations of Urea - and corresponding mean square displacements. Figure from the book ‘Modern 
charge density analysis’, ed. Macchi and Gatti. 
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Figure 1 shows dispersion relations for the 3 x 16 = 48 modes of vibration for urea, which has 
n=16 atoms in the unit cell. The dispersion relations are shown in the first Brillouin zone in the 
direction of the q vector [0 0 ξ],  0 < ξ < 0.5. The dispersion curves are based on a force-constant 
model fitted against inelastic neutron scattering measurements 3 and ab-initio calculations 4. 
Once the normal modes and frequencies have been obtained from a force-field model, they can 
be used to calculate the vibrational contributions to the thermodynamics of the crystal, i.e. the 
entropy and heat capacity. They can also be used to calculate the atomic mean square 
displacement tensors, and thereby the Anisotropic Displacement Parameters (ADPs) which are 
normally part of crystallographic models. The mean square displacement tensor of a vibrating 
atom k, may be written in terms of a summation of contributions from all the 3nN normal 
modes of vibration:  

 
where e(k|jq) represents the kth component of a normalized complex eigenvector e(jq), and 
corresponds to atom k in normal mode j along the wavevector q. ωj is the frequency of mode j, 
mk is the mass of atom k, and Ej(q) is the energy of the mode, given by  

  
BBatom(k) in Eq. 2 is the atomic mean square displacement tensor. It is a symmetric 3 x 3 tensor 
equivalent to the tensor of ADPs, as further described below. The normal mode vectors e(jq) 
derived from the lattice dynamical model contain information about the correlation of atomic 
motion. This correlation is not directly available from a single temperature experiment, but 
some information can be derived using a rigid-body approximation and via multi-temperature 
experiments, vide infra.   

Atomic displacement parameters 
We have sketched how the theory of lattice dynamics can be used to describe the atomic 
vibrations in a crystal in terms of normal modes of vibration. The usual models adopted for 
structure refinement and charge-density analysis in crystallography do not use a lattice 
dynamical approach, but consider the atoms as individual harmonic oscillators, moving in the 
mean field of the surrounding atoms. In this approach, the mean thermal electron density of an 
atom is considered to be the convolution of a static density ρk(r) with the probability density 
function pk(r) describing the probability of having atom k displaced from its reference position 
rk0;  

 
It is important to realize that in this model, the static atomic electron density ρk(r) is not 
deformable: As the atom is vibrating and thereby displaced from its equilibrium position, the 
electron density is rigidly following the nucleus. This approximation is called the rigid pseudo 
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atom approximation. Whether this approximation is reasonable is difficult to investigate. The 
question is whether the perturbation of the atomic electron density caused by (vibrational) 
changes in the internuclear distances is of a magnitude that can be detected by experimental 
charge density studies. At least, the model is sufficient to provide displacement parameters in 
excellent agreement with parameters derived from inelastic neutron scattering measurements 5,6. 
The X-ray structure factor for the scattering vector h is given by the Fourier transform of the 
average electron density of the unit cell, 

  
Each atomic contribution consists of a form factor fk(h), which is the Fourier transform of the 
static density ρk(r), multiplied by a term that is the Fourier transform of the atomic probability 
density function 

  
The scattering factor, or atomic form factor, of atom k is 

  
Where v is a positional vector with origin at atom k. Likewise the Debye Waller factor is the 
Fourier transform of the atomic probability density function pk(u); 

  
This last term contains the dependence of the structure factor on the atomic displacement. In 
most cases the pdf is approximated as an anisotropic Gaussian function. Under such 
circumstances, T can be written as 

  
The component Ujl is one form of the anisotropic displacement parameters; they can be 
described in other bases as well. The parameters have dimension (length)2 and can be directly 
associated with the mean square displacements of the atom considered in the corresponding 
directions. For a thorough description of displacement parameters read the paper by Trueblood 
et al 7. 

Validation and analysis of atomic motion    
How do we know whether a set of ADPs are sound? Do they reflect the vibrations in the crystal, 
or are there artifacts due to e.g. static disorder in the crystal, or due to experimental or modeling 
errors? For a discussion of commonly found problems, seen in the light of differences between 
structures from X-ray and neutron experiments, read Blessing’s paper 8. 
For the purpose of structural refinement an inspection of the equal-probability ellipsoids (Fig. 2) 
often suffices to elucidate problems. Abnormally oblate or prolate ellipsoids are usually caused 
by static disorder, where several conformations of molecules or parts of molecules occur in 
otherwise identical unit cells. Static displacive disorder is quite common in crystals, however 
very few systems showing obvious signs of static disorder have been subjected to a quantum-
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crystallographic studies. Static disorder is temperature independent, as opposed to the thermal 
vibrations, and multi-temperature studies are an obvious way of distinguishing between the 
different types of contributions to the ADPs. Ellipsoids that are elongated in the same direction 
for all atoms are typically caused by a missing or erroneous absorption correction. It is a 
necessary but not sufficient condition that the ADPs fulfill the rigid bond test proposed by 
Hirshfeld 9; covalently bonded atoms of similar mass (e.g. second-row atoms in organic 
molecules) must have similar mean-square displacements in the direction of the bond. The 
mean square displacement of an atom k in the direction of the unit vector v is given by v B(k) vT 
where B(k) is the mean square displacement tensor (in Cartesian representation) of atom k, and 
vT is the transpose of v. Differences of more than 10-4 Å2 should be viewed with skepticism. The 
rigid bond test can be extended to include non-bonded atoms in the structure 10. If the mean 
square displacements between non-bonded atoms in a molecule are found to obey the rigid bond 
test, the entire molecule is probably vibrating as a rigid body. It may also be found that only a 
part of the molecule is moving as a rigid body. In either case, the ADPs of the structure can be 
subjected to a rigid body analysis or segmented rigid body analysis, as explained further below. 

Rigid body analysis 
Rigid body analysis is an attempt to analyze the atomic mean square displacements of a molecule 
as if the molecule was vibrating as a rigid unit, independent of the motion of the surrounding 
molecules in the crystal.  
Following the pioneering work of Cruickshank 11,12 researchers have analyzed the ADPs as if they 
originated from collective motion with a considerable amount of success [19–24]. The most 
well-known model is the Translation/Libration/Screw (TLS) model developed by Schomaker 
and Trueblood 13. The ADPs do not contain information about the correlation of motion 
between different atoms – however since the energy of the molecular modes depend on the 
temperature via Eq. 2 and 3, multitemperature experiments can recover part of this correlation, 
as shown by Bürgi and co-workers 14,15. 
A range of computer programs have been developed to perform rigid body analysis, either using 
the TLS formalism (PLATON 16 and THMA11 13) or related models (EKRT 17,18 and NKA 15). A 
good review of the TLS method is given by Dunitz et al 19. 

Estimating ADPs for Hydrogen Atoms  
Hydrogen atoms are difficult to handle, seen from the point of view of the X-ray 
crystallographer. The scattering from hydrogen is very weak because of the low electron density, 
and the density is also polarized towards the covalent bond. If possible, it is therefore 
advantageous to perform a complimentary neutron diffraction study. However, the limited 
access to neutron facilities, and the problems associated with growing very large crystals (several 
mm3) makes this impractical in many cases. A number of ways to estimate the ADPs have 
therefore been proposed. 



47Erice International School of Crystallography • 52nd Course, 1-10 June 2018

The SHADE approach 
It is possible to analyze the vibrational motion of hydrogen atoms in a similar vein as the 
statistical analysis of X–H bond lengths derived from neutron diffraction studies found in 
International Tables for Crystallography 20. When the total atomic mean square displacement 
tensor U has been determined from neutron diffraction experiments, and the rigid molecular 
motion Urigid has been determined from a rigid-body analysis of the non-hydrogen ADPs, it 
becomes possible to get an estimate of the internal motion of the hydrogen atoms; 

 
It was noted by Johnson 21 that the mean square displacements derived from Uinternal of hydrogen 
atoms was in good agreement with spectroscopic information, showing systematic trends 
corresponding to the functional group that hydrogen was part of. Similar observations were 
done by Craven and co-workers in the analysis of several systems22–25. The internal torsional 
motion of a range of librating groups, including methyl, carboxyl and amino groups was also 
thoroughly investigated by Trueblood and Dunitz 26 based on more than 125 neutron diffraction 
studies of molecular crystals from the literature.  

 
Figure 2. Estimated H atom ADPS for 1-methyl uracil using various approaches. Reproduced from Munshi et al. 

Inspired by these results we analyzed a range of neutron structures found in the literature, and 
the estimates of internal motion were collected in a ‘library’ and later improved and enhanced 
with more statistical material 27,28. The present SHADE2 library provides mean values of internal 
stretch modes as well as in-plane and out-of-plane bending modes for a range of chemical 
groups involving hydrogen bound to C, N and O. The library forms the basis for assigning 
anisotropic displacement parameters to hydrogen atoms in the SHADE server 29 which allows 
users to submit a CIF file containing the atomic coordinates and the ADPs of the non-hydrogen 
atoms. The server performs a TLS analysis using the THMA11 program, and combines the rigid 
body motion with the internal motion obtained from analysis of neutron diffraction data. It is 
possible to perform a segmented rigid body analysis using the attached rigid group approach of 
the THMA11 program. The SHADE server is available at the web-address http://shade.ki.ku.dk.   
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Whereas SHADE uses information from neutron diffraction studies, ADPH uses spectroscopic 
information 30, and TLS+ONIOM derives the internal motion from ab-initio ONIOM 
calculations 31. Lübben et al 32 have developed the TLS+ONIOM idea further and provides new 
TLS software and a library of ab-initio computed internal vibrations. A related approach is the 
SHADE3 approach, where the internal modes are derived from periodic DFT 33. 
The ADPH, SHADE and TLS+ONIOM approaches have been compared by Munshi et al. 28. 
They differ primarily in the way the internal motion is estimated. The ADPs of hydrogen atoms 
in 1-methyl-uracil based on these approaches are compared in Fig. 2. The mean similarity index 
(see the paper by Munshi et al for further details) is given on the figure. All models are in 
excellent agreement with the ADPs based on neutron diffraction experiments, and this was also 
the general conclusion in the comparison by Munshi et al., where the SHADE server was 
recommended as a routine procedure for deriving estimates of H-atom ADPs suitable for 
charge-density studies of molecular crystals. 

Atomic motion derived from Force-field or ab-initio calculations   
In the late 1970s and 1980s Gramaccioli and co-workers made important progress in the 
evaluation of temperature factors based on Born–von Kármán lattice-dynamical force field 
calculations 34. These studies showed a reasonable agreement with experimental temperature 
factors from neutron diffraction studies. In recent years, it has become feasible to derive the 
force constants for lattice-dynamical calculations of vibrational modes and   thermodynamic 
properties from periodic DFT (density functional theory) calculations, and these types of 
calculations have been used intensively to investigate the vibrational and thermodynamic 
properties of mostly metals and inorganic materials 35. There are well established methods for 
calculating mean square displacements (MSDs) based on force-field calculations. Only recently 
have these methods been extended to periodic DFT calculations on molecular crystals, because 
the calculation of ADPs for molecular  crystals has additional challenges that are not found for 
extended solids. Whereas the dominant forces between the atoms in extended solids are strong 
and of covalent or ionic character, molecular crystals are held together by much weaker forces. 
In fact, dispersion forces may be dominant in systems without hydrogen-bonding capabilities. In 
these situations, current ab-initio  methods for solids, in particular the widely used DFT 
methods, may prove to be unable to quantitatively describe the dynamics of the system. 
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Figure 3. Ellipsoids of thermal motion  for the Urea crystal estimated from periodic DFT calculations. Figure from 
Madsen et al (2013). 

Morrison and co-workers 36,37 have used Car–Parrinello molecular dynamics (MD) simulations 
to investigate the anharmonic atomic motion in crystals. Based on their calculations, they 
suggest new models of anharmonic motion that will reduce the number of parameters typically 
used for these models (the Gram–Charlier expansion). Nemkevich et al.  38 used traditional 
force-field-based MD simulations to obtain isotropic harmonic motion. Comparing their results 
with experimental results, they generally observe that the computed MSDs are much smaller 
than the experimentally observed ones.  
Dittrich et al.  39 have used ONIOM (quantum mechanical/molecular mechanics hybrid) 
calculations to obtain ADPs for a number of molecular crystals. Their results compare well with 
experiments at ultra-low temperatures (10–20 K) when the computed ADPs are scaled against 
the observed ADPs.  
Madsen et al 4 used DFT methods in combination with an empirical dispersion term, proposed 
by Grimme 40 and tested for crystalline systems 41. This approach was tested on the urea crystal, 
see Fig. 3. The results were promising, although not perfect.   Since the work of Madsen et al 
(2013) the group of Dronskowski has published a range of papers on obtaining ADPs for 
molecular crystals from dispersion-corrected periodic DFT (e.g. Deringer et al., 2014; George et 
al., 2015). They have a website where more information and help can be found 
(www.ellipsoids.de). 

A new approach: Dynamic Quantum Crystallography 
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Information on the correlation of atomic motion is lost in the standard elastic scattering 
experiment. However, as we have discussed above, the temporal and spatial average of the 
atomic fluctuations – mean square displacements - can be retrieved from a diffraction 
measurement. In recent work we have combined this information  with lattice-dynamical 
models derived from periodic DFT calculations 44,45. In this approach, the amplitudes of the 
acoustic and lowest-frequency optical phonons are refined against the diffraction intensities. In 
our simplest model, these phonon modes are approximated by the motion at the Gamma point 
of the Brillouin zone.  

 

Figure 4. Top:  Heat capacity of Naphthalene (Cp): from thermodynamic measurements (blue curve), calculated from 
frequencies obtained after NoMoRe (red curve) and estimated by Aree and Bürgi (green curve). Bottom:) difference 
between Cp from calorimetric measurements and from the models. Figure from Hoser & Madsen (2017). 

Despite the very simple lattice dynamical model, these Normal Mode Refinements (NoMoRe) 
captures essential information about the crystal dynamics from the experiments. In figure 4 we 
compare the heat capacity of naphthalene obtained from calorimetric measurements against the 
heat capacities obtained by the NoMoRe procedure, as well as with the related models of Bürgi 
and Aree 46. 
The atomic mean square displacements obtained by fitting the normal modes against the 
diffraction intensities compare well with the displacements obtained from standard 
crystallographic models, and additionally the hydrogen atom anisotropic displacements compare 
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well with independent information from neutron diffraction experiments. However, by 
combining aspherical atom refinement and normal mode refinement it is evident that there is 
information in the diffraction experiments that is not captured by the model (Sovago, Hoser, 
Madsen in preparation); there is plenty of room for improvements.  

Diffuse scattering 
One obvious next step in quantum crystallographic studies of dynamics is to model thermal 
diffuse scattering (TDS). Studies of diffuse scattering from crystals are experiencing a renaissance 
in these years. This is due to the advent of very sensitive low-noise detectors and because high-
performance computing has made it possible to construct ab-initio models of the crystals which 
can explain the diffuse patterns. Diffuse scattering patterns originate from ordering at length 
scales larger than the unit cell dimensions. The ordering can be of either static or dynamic 
character; and in both cases reveal important information about the physical properties of the 
crystal. 
The thermal diffuse scattering (TDS) signal can be diminished by cooling the crystals to very low 
temperatures, but it can never be fully removed. If TDS is not accounted for it will give rise to 
additional systematic changes in the Bragg intensities, and thus create artifacts in the 
crystallographic models, as we have recently demonstrated in a model study on silicon and cubic 
boron nitride 47. This implies that even in quantum crystallographic studies where the dynamics 
is of secondary interest, it is important to have an accurate model of motion in order to properly 
take these contributions into account. 
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The conventional modelling of X-ray diffraction data is an atomic expansion of the electron 
density, namely 

 ( ) ( )unitcell i ii
ρ ρ= −∑r r R  

where R is the position of atom i. and i ρi are atomic ground state spherical densities. The 
superposition of spherical atomic densities represents the so-called independent atom model 
(IAM). ρunit-cell(r) is called the pro-crystal electron density distribution. If we limit the sum (1) to 
the atom forming just one molecule in the unit cell, then ρ(r) is the pro-molecule electron 
density. 
The atomic multipolar expansion can be regarded as an extension of the spherical atom model 
and has become the standard for charge density determination in the past 40 years. This is due 
to the conceptual simplicity and the close relationship with molecular orbital wavefunctions ψ 
expanded in terms of linear combination of atomic orbitals χi (LCAO), that provide the electron 
density in the form of: 

 )()()( μμ
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 ∑=
j

jjj ccnP μννμ  

nj is the occupancy of the molecular orbital (in a closed-shell system, described by a single 
configuration, nj = 2 or nj = 0). However, from the LCAO approximation, the one-electron 
density contains terms of expansion (2), which are centered on one atom, as well as two-center 
terms (products of orbitals on two different atoms). The latter are of course more important for 
the chemical bonding and mostly contribute to the asphericity. An atom-centered multipolar 
expansion of the electron density is inherently unable to exactly reconstruct the two-center terms 
(Coppens, Willoughby & Csonka, 1971; Coppens, Pautler & Griffin, 1971; Matthews, Stucky & 
Coppens, 1972; Stewart & Bentley, 1973). However, it is a very practical solution, because it 
simplifies enormously the model. The one-center functions in expansion (1) may also be 
centered at non-nuclear positions, e.g. midpoints of the bonds, although an atom centered 
multipolar expansion is by far the most adopted one. The name pseudoatom (Stewart, 1976) was 
introduced to identify the set of multipole density functions that rigidly move with the atomic 
nucleus. The functions are parametric as one can optimize the radial behaviour and the 
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coefficients of an aspherical expansion in terms of spherical harmonics. To refine the 
parameters, Stewart (1976) proposed the least square fitting of the Fourier transformed electron 
density, which is directly comparable to the measurable X-ray diffraction structure factors. Gill 
(1996) called the pseudoatom the Stewart Atom, which is anyway valid for all the multipolar 
formalisms proposed over the years, for example by Kurki-Suonio (1977), Hansen & Coppens 
(1978) and Hirshfeld (1977). By far, the most adopted model is that proposed by Hansen and 

Coppens, who expanded the atomic density )(riρ as: 
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& 3 3
, , , , , ,

0, 0,
( ) ( ) ( ) ( ) ( / )H C

i i core i core i valence i i valence i l l i l lm lm
l l m l

P P R Pρ ρ κ ρ κ κ ± ±
= =

⎡ ⎤
′ ′= + + ⎢ ⎥

⎣ ⎦
∑ ∑r r r r y rr

This model differs from Stewart’s one mainly because of the additional valence monopole, which 
is missing in Stewart’s formalism: 
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The difference between the two models is that in (4) the valence is described by two monopoles 
(typically, one constructed with the radial function derived from a full Hartree-Fock expansion, 
like for the core density and the other with a single-ζ function, like for the higher multipoles), 
whereas in (5) the valence monopole as well as the higher multipoles are described with a single-
ζ radial density function, see Table 1. 
In both equations, the main model parameters (i.e. variables of a least square refinement) are κ 
(or ζ) and P coefficients. The core populations are often kept frozen to nominal values, or 
collectively refined for all atoms of the same kind in a molecule. While in Hansen & Coppens 
(1978), the scaling constants κ andκ’ are refined, in Stewart (1976), it is the exponent ζ of a Slater 
function to be directly refined. If the radial function is a single Slater orbital, the two approaches 
are of course equivalent, whereas they differ if the radial function Rl(r) is a multi-Slater function, 

as for example adopted to describe d-orbitals in transition metal atoms. The l+1 parameters 
are normally constrained to the same value for all poles to avoid divergence. More frequently 
they are also constrained to be the same for all atoms of a given kind on the structure and it 
could be sometime necessary to fix κ =κ’, to avoid physically inconsistent values (Abramov et al., 
2000).  

lκ′

Angular functions and coordinate system 
The choice of angular functions for the multipolar expansion was obviously oriented toward the 
spherical harmonics. They offer the advantage to be the irreducible representations of the 
spherical group and form a complete set of orthonormal bases. This has two consequences: a) all 
parameters of a given atom are linearly independent; b) any product of two spherical harmonics 
centered on the same atom can be expressed as a linear combination of spherical harmonics 
(Rose, 1957). In principle, this allows a direct correlation with atomic orbitals, given that the 
electron density can be expressed as a series of products between orbitals. However, this is not 
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generally the case, because the spherical harmonics associated with classical multipolar 
expansions describe with one-center terms also the two-center orbital products. Moreover, 
orbitals belonging to the same shell (like 2s, 2p for L shell; or 3s, 3p and 3d for M shell, etc.) are 
normally associated with very similar radial functions and this makes it impossible to distinguish 
between poles produced by different orbital products.   
The presence of angular oriented functions at an atomic site, implies a definition of axes. The 
problem is similar to that of the anisotropic displacement parameters in classical refinements of 
crystal structures. One can of course apply for multipoles the orthogonalized axes of the unit cell 
as typically adopted for the anisotropic displacement parameters. Instead, Hansen and Coppens 
(1978) proposed to define a local coordinate system for each atom, which has some advantages: 
a) it enables to reduce the number of parameters of the multipolar expansion if pseudo-
symmetries are exploited (i.e. symmetry present in the ideal conformation of an isolated 
molecule, but not coinciding with symmetry elements of the crystals); b) it enables to refine only 
multipoles corresponding to a given hybridization state for an atom, see for example Rezende 
Dos Santos, Genoni & Macchi (2014); c) it enables the exportability of multipoles in appropriate 
databases, under the hypothesis that atoms of particular functional groups with similar 
behaviour may behave very similarly. The local system is sometime very intuitive to choose, but 
often the atomic stereochemistry significantly differs from the ideal one (due to simple 
hybridization states).    
It is important to highlight that a local coordinate system is a flexibility, it is not mandatory and 
not at all a limiting factor. Analogously, it could be possible defining local coordinate systems 
also for describing the ADP’s, as it is in fact adopted when applying similarity restraints to 
chemically equivalent atoms or functional groups by standard software for crystal structure 
refinement. 

Radial functions  
As provocatively stated by Flensburg, Larsen & Stewart (1995), the choice of a radial function for 
the atom-centred multipole expansions is “more an art than a science”. There are, however, rigid 
constraints, dictated by physics. For this reason, crystallographers have normally taken radial 
functions from Slater-type atomic orbitals calculated at Roothan-Hartree-Fock or 
multiconfigurational level of theory for isolated atoms. In some cases, projected wave functions 
of numerical solution of four component Dirac-Fock equations have been proposed. This 
implies analytical functions that mimic those of a Roothan expansion, although not obtained 
variationally. This proved to be very useful for implementation of relativistic corrections in 
software that calculates analytical expressions of the electron density, without resorting on more 
complicated expressions. More recently, calculations using zero order relativistic approximation 
have been used to obtain multiple-ζ Slater type orbitals for all atoms, see Volkov et al. (2006). In 
Table 7, the most adopted functions, within the multipolar formalism (4) are reported. 
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Table 1. The most adopted radial functions for multipolar expansion of the electron density, see equations (4) and (5). 

Authors  type of wave function Core  Spherical 
Valence  

Deformation 
Valence  

Clementi & 
Roetti (1974) 

Roothan-Hartree Fock, 
multiple-ζ atomic orbital 
functions; non-relativistic 

Ideal for 
elements with 
low Z  

ideal rarely used 

Clementi & 
Raimondi 
(1963) 

Single-ζ atomic orbital 
functions, non-relativistic  insufficient used  ideal 

     
Su & Coppens 
(1998) and 
Macchi & 
Coppens 
(2001) 

Fitting of multiple-ζ Slater 
atomic orbital functions to 
Dirac-Fock numerical 
solution; relativistic 

ideal for all 
atoms 

ideal rarely used 

     

Volkov & 
Macchi (2006) 

multiple-ζ Slater atomic 
orbital functions, 
calculated with zero-order 
regular approximation; 
relativistic 

ideal for all 
atoms 

ideal rarely used 

Physical constraints 
The electron density obtained with a multipolar model does not necessarily behave as expected 
by quantum mechanics. A truly quantum mechanical density is impossible to obtain with that 
method and the refinement techniques. However, some constraints can be easily applied in 
order to at least guarantee that some quantum mechanical features are respected: 
a) Electro-neutrality. This condition is rather obvious and it is obtained by constraining the sum 
of the valence and core electron populations to be equal to the sum of nuclear changes. Using a 
least-square procedure, this constraint is quite easily applied. Noteworthy, though, if all core 
monopole populations and the scale factor are simultaneously refined, the constraint matrix 
would be singular. For this reason, the scale factor is refined using only the valence electrons as 
variables or otherwise it is not refined, but calculated from the ratio between the expected 
number of electrons and those actually obtained, putting as variables also core electrons 
(Stewart, 1976). 
b) Cusp condition. According to Kato (1957), the electron density must feature a cusp at the 
position of each nucleus, satisfying the condition 
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This implies that, in principle, that one should not scale the Slater exponent for orbital 1s, which 
is in particular cogent for H atoms. However, this is typically done, applying a κ parameter of 1.2 
(or refining it), given that the default exponent ζ = 1.0 (which becomes of course 2.0 in the 
density representation) produces a too contracted electron density for the H atom. Among the 
various radial functions, those obtained by non-linear fitting of the numerical solution of a 
Dirac-Fock equation, like Su & Coppens (1998) and Macchi & Coppens (2001), do not fulfil cusp 
condition, although they are very close. The deviation from the exact cusp was in fact taken as a 
criterion to assess the quality of the non-linear fit. 
c) Poisson’s condition. This is dictated by Poisson’s electrostatic equation. As shown by Stewart 
(1977), this implies that the density function must have a radial exponent with nl ≥ l in order to 
avoid divergence at nuclear positions and therefore violating Poisson’s condition. For this 
reason, the Slater atomic orbital functions must be appropriately modified (if necessary) when 
used for the radial part of higher poles (deformation density). For example, the orbital radial 
function of 2s or 2p of a second raw atom, has n  = 1 which means, in the density formalism, nl = 
2. This implies that such a function is inappropriate for an octupole or hexadecapole density 
function, and it is typically corrected to nl = 3 and 4, respectively. Other recipes have been 
proposed, especially for third raw atoms and transitional metals, see for example Hansen & 
Coppens (1978). 
d) Hellman-Feynmann theorem. This is a well-known and central theorem of quantum 
mechanics, which implies that the electrostatic forces at nuclei must vanish at equilibrium. 
Because these forces are mainly due to small dipolar deformations in the vicinity of the nuclei, it 
is unlikely that with typical resolution of X-ray diffraction measurements one can verify the 
theorem experimentally. Although in principle feasible, multipolar refinements are typically 
unconstrained and the standard models (i.e. with fixed and spherical atomic cores) return 
normally small forces at nuclear sites.  
f) Site symmetry. If an atom sits on a symmetric site, some restrictions apply to the atomic 
multipoles, following simple rules, as described in Kurki-Suonio (1977). The reason is that, apart 
for the total symmetric representation of the spherical group (namely, the monopole), all other 
representation may not be invariant under application of all possible symmetry elements. For 
example, a dipole is not invariant respect to inversion or to reflection perpendicular to the dipole 
axis. The application of these rules implies that some multipoles must be necessarily null. Clearly 
the choice of the local coordinate system must reflect the crystallographic symmetry, otherwise 
application of the symmetry restriction rules can be very complicated.   
g) Crystal point group symmetry. Apart from the limitations of the atomic site symmetry, 
Terpstra, Craven & Stewart (1993) reported on ill determination of odd-poles in non-
centrosymmetric space groups. Roversi & Destro (2017) have shown that this depends on a 
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special class of invariant odd-poles, possible only in non-centrosymmetric crystals, which have 

phases shifted by
2
π

± with respect to the phases generated by the core and valence monopoles 

(which are the main contributors to the structure factor and those which determine its phase). 
Using a global unit cell coordinate system, the problem affects, for example, the dipoles 

in point groups 3, 4, 6 or the octupoles 
ll=1,m =0y , ll 3 m -2y = =  in 222. A solution is that of 

constraining the sum of all these poles in the asymmetric unit be equal to zero. Noteworthy, the 
poles mentioned above are defined in the global unit cell coordinate system. If a local coordinate 
system for each atom is adopted, setting the overall conditions is more difficult.  Luckily, for 
crystals with many atoms in the asymmetric unit (and only few or none on special positions), the 
effects of the problem of invariant odd-poles are minimized.  

Correlation among parameters and uncertainties 
To optimize the model parameters, algorithms like those of typical structure refinements are 
used. At the end of a refinement a variance-covariance matrix is available, which informs us on 
the uncertainties on each parameter as well as on the correlation among them. The correlation is 
in fact quite important because it may severely affect the possibility to reconstruct with high 
precision the electron density of the system. This is due to different reasons:  

a) data incompleteness / low resolution: if the number of data is not sufficient (typically at 
least 10 reflections per parameter are necessary) it is not possible to increase the 
flexibility of the model (using high value of lmax, more radial functions and 
corresponding κ sets, etc.);  

b) if the valence shell of a given atom is too diffuse, only few reflections will be affected by 
those electrons. This problem is even worse, if the crystal unit cell is small and therefore 
the sampling of intensities at small values of |H| is very poor. In this circumstance, a 
high resolution data set would not be particularly useful to refine the multipolar 
coefficients of the density functions corresponding to those valence electrons;  

c) low precision of the measured data (in this case the weight of some reflections will be 
systematically lower, reducing de facto the number of effective reflections.     

While problems a) and c) can be resolved with a more comprehensive and precise data 
collection, point b) is an inherent problem with the crystal structure and cannot be solved. It 
mainly affects inorganic compounds, containing few atoms in very small unit cells.  

Extended Hansen Coppens models and core refinement 
As anticipated above, the radial description of the atomic densities is rather crucial. While 
atomic wave functions of electronic ground states of isolated atoms provide good 
approximations, they are not necessarily perfect to describe the accurate electron density 
distribution. In fact, atomic electron densities contract or expand depending on interactions 
with other atoms. One can easily predict a shell expansion for atoms bearing a negative charge 
and contraction for atoms positively charged.  Within the multipolar model, this phenomenon is 
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accounted by modifying the exponents of the Slater Type functions or, in formalism (4), 
modifying the κ parameters. Much more difficult is taking properly into account the anisotropic 
deformation due to the chemical bonding. In fact, even within the same electronic shell, one 
must consider the possibility of different expansion/contractions in different directions. This 
could be estimated in several ways, but the price would be to significantly increase the number of 
parameters of the model. A larger flexibility is obtained assigning to each function in the 
multipolar expansion of equation (4), an independent radial function (Gillet & Koritsanszky, 
2012; Koritsanszky, Volkov & Chodkiewicz, 2012): 
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Equation (7) implies more parameters, because each multipole l,ml has basically an independent 
radial function and κ' scaling. In principle, this means (lmax+1)2 radial functions (hence κ') 
parameters for the valence deformation shell, instead of the typically adopted singly κ'. This 
extra flexibility should be applied with care, because in practical cases instability of the 
refinement due to large correlation among parameters would be expected. A refinement may be 
more stable if the ml-dependent radial functions are rigidly constrained to be the same for each l 
shell, reducing the number of κ' refined to lmax +1. 
One could extend the flexibility to the core density as well. As a matter of facts, the possibility to 
visualize distortions of the atomic cores was proven by Fischer et al. (2011). This of course 
requires a much higher accuracy and resolution compared with standard charge density 
experiments. The modelling is conceptually simple because one can extend equation (4) to the 
core electron density. Refining core electron density within a multipolar model is not 
particularly different from refining the valence electron densities:  
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where in principle the extra radial flexibility of equation (7) could also be adopted.  
Anyway, a strong correlation problem may be easily envisaged even if the radial flexibility is 
limited to l-dependency. As summarized by Macchi (2013), the core charge density refinement 
could be carried out with different degrees of flexibility, namely: 
(1) minimal: refining the atomic core monopole populations in a typical multipolar refinement, 
that means making Pcore in equation (4) a variable; 
(2) semi-flexible: refining a scale κcore factor together with the monopole population, allowing 
therefore a contraction/expansion of the core itself; 
(3) flexible: refining a full set of multipoles (even up to hexadecapole) for the core electrons, 
starting from the orbitals of the atomic wave functions.; 
(4) extremely flexible: refining different sets of multipoles and contraction factors for each 
electronic shell of the core for atoms of the third period or higher (thus one set of multipoles for 
K shell, one for L-shell etc.).. 
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Databases approaches. 
In contrast with the extra-flexibility of the extended Hansen-Coppens models, one could instead 
reduce the flexibility of (4) when dealing with lower quality data and very large systems. In this 
respect, the local definition of a coordinate system is very useful to adopt the concept of atomic 
electron density transferability. The assumption is that the stereochemistry of an atom 
(hybridization state, number and type of bonds made by the atom, conformation of the 
functional group to which the atom belongs) mostly determines the electron density distribution 
of the atom, hence the derived multipolar expansion. This implies that the same set of atomic 
multipoles can equally well describe a given functional group inserted in different molecules, and 
packed in different crystals.  
The purposes of this kind of studies are: a) improve the structural refinement of a molecule even 
when the measured data are of quality insufficient for a full charge density study, or when the 
resolution is not sufficient to include so many parameters; b) having a rapid evaluation of 
electrostatic properties of molecules even when fully free multipolar refinements cannot be 
carried out.  
Over the years, several databases have been developed (Pichon Pesme, Lecomte & Lachekar, 
1995; Volkov et al., 2004; Dittrich et al., 2006), based on different grounding but having in 
common the same idea of transferability. Pichon Pesme, Lecomte & Lachekar (1995) built the 
database of multipoles from a series of experimental studies on amino acids and peptides or 
other molecules containing same functional groups. A similar idea was developed by Volkov et 
al. (2004), however using multipoles calculated with theoretical methods and expanded in terms 
of atomic multipoles. Instead, Dittrich et al. (2006) proposed the so-called invariant pseudoatom 
or invariom (invariant with respect to the transfer from a general model to an actual molecule). 
An atom type is identified from a generalized definition: the nearest neighbours of the invariom 
are the same as for the atom in the actual molecule. Thus, a theoretical calculation on a 
prototype molecule (constructed with the invariom principle) enables defining the invariom set 
of multipoles for an atom.  
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Neutron Diffraction  

UnPolarized Neutron Diffraction 

Properties of the neutron 
Mass: 1.675×10−24 g 
Charge: 0 
Life time : 886.8 s (14.8 minutes) 
Spin:1/2 

Interaction with crystals 
The scattering length of the neutron-nucleus system is the basic quantity which describes the 
strength and character of the interaction of neutrons with the individual nuclei. The values of 
scattering lengths vary irregularly from one nucleus to another in the periodic classification. 
Therefore neutrons are an important tool for the investigation of the static and dynamic 
properties of condensed matter since they distinguish between various elements and isotopes. 

Neutron scattering lengths 

 

Figure 1. Nuclear scattering lengths (10-15m) of some atoms. 
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Comparison between X-rays and neutrons 

 

Figure 2. Comparison of nuclear diffusion factor and nuclear scattering length (10-15m) of some atoms. 

Polarization neutron diffraction 

Polarization of a neutron beam and action of a magnetic field 
The spin polarization of the neutron beam is a classical vector. In a magnetic field, the magnetic 
moment of the neutron precesses around the field. If the direction of this field changes abruptly, 
the polarization vector replaces it rotation around this new orientation. 

Interaction with crystals 
For a beam of polarised neutrons, the differential scattering cross sections (σ) corresponding to a 
Bragg reflection can be expressed as functions of the nuclear and magnetic structure factors (FN 
and FM, respectively, Q being the diffraction vector): 

 

  
Without any polarization analysis of the diffracted beam the measured intensity is: 

 
 is a vector corresponding to the component of the magnetic structure factor ( ) 

perpendicular to the diffraction vector.  is the vertical component of the  vector (i.e. 

parallel to the magnetic field applied to the sample) :       
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The polarized neutron diffraction (PND) experiment 
This experiment requires a neutron source (nuclear reactor, spallation source) and devoted 
beam-lines allowed to maintain the polarization of the incident beam. The sample itself is 
subject to an external magnetic field. A schematic description of the 5C1 beamline at CEA Saclay 
(France) is given by figure 3. 

 

Figure 3. Schematic representation of the 5C1 beamline at LLB (CEA Saclay). 

The polarized neutron diffraction (PND) technique 
The PND technique takes advantage of the incident polarization dependency of the cross-
section to measure precise quantitative magnetization distributions of single crystals. This 
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technique is mainly used for investigating single crystals that are ferro- or ferri-magnetically 
ordered in an applied magnetic field. It can also be applied to some antiferromagnetic materials. 
The magnetic field is vertically applied to the studied crystal. The beam is supposed to be 
perfectly polarized parallel (+) or anti parallel (-) to this applied field. Then, for each reflection of 
a centrosymmetric crystal, we measure the flipping ratio R(Q) which is define as the ratio 
between the cross-sections measured for polarization (+) and (-): 

 
The data treatment and correction 

- Correction due to the beam: a part of the corrections are due to the imperfect polarization of 
the incident beam (P) or to the efficiency of the flipping. The polarization correction is linked to 
the part of the signal (Φ) mesured for each polarisation: 

 
- Correction due to the sample: extinction is different for I+ and I-  
- Correction due to the nuclear polarization: Two effects have to be considered. First, the 
interaction between the spin of the neutron and the nuclear spin which is proportional to the 
polarisation of the nuclear spins. This effect is particularly sensitive for hydrogen atoms. The 
second correction is due to the interaction between the magnetic moments of the neutrons and 
the electric field created by the electrons and nucleus (Schwinger effect) 

Spin density modeling  
There are two possible ways to recover the spin density from the experimental data: 

‐ directly without making assumptions about the nature of this distribution 
‐ with a parametric model 

Direct Methods  

Fourier transform 
The spin density can be written as the inverse Fourier transform of experimental magnetic 
structure factors provided that the sum is infinite. In practice, this sum is limited by the 
experimental limit of sin(θ/λ). Furthermore, only Bragg reflections for which the nuclear 
structure factor FN is sufficient can be measured. Therefore, this method is not convenient to 
obtain reliable density.  

Maximum entropy methods  
The Maximum Entropy Method (MEM) consist of maximizing entropy and at the same time 
fulfills the condition χ² = 1. [Papoular1990] 
To calculate the entropy, the lattice of the compound is divided in M pixels in which a constant 
density is assumed. For the spin we consider a double distribution of positive quantities ni = 
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ρ+(ri) and ni+M = ρ-(ri), the magnetization density is then given by si =ρ+(ri)-ρ-(ri). The entropy of 
the density in the magnetization is then defined by: 

 
and χ² is defined by: 

 
Parametric model  
Different approaches can be considered depending on the quantity being modeled: the unpaired 
electron wave function or the spin density [Schweizer2001]. In both cases, the model consists of 
an analytic expression, with parameters that are refined by comparing theoretical magnetic 
structure factors (or flipping ratios in non-centro cases) with experimental values. These 
parameters are then used to reconstruct the spin density with the analytical model. 
Wave function Model  
In the Restricted Hartree-Fock (RHF) description of the wave function of a molecular system 
with an unpaired electron, the spin density is given by the square of the modulus of the 
molecular orbital φ(r) occupied by a single electron: 

 
Where the molecular orbital φ ϕ is written as a linear combination of atom centered atomic 
orbitals ψi(ri):   

 
Atomic orbitals are themselves linear combinations of Slater type atomic functions. 
In the final expression of the magnetic structure factors (not shown here), the parameters to be 
refined are the atomic spin populations together with the atomic orbital coefficients. 

Multipolar Model 
Multipolar modeling of spin density has been derived from the charge density Hansen and 
Coppens formalism []. The spin density is described as a sum of atomic densities: 

 
And the atomic spin density is modelled thanks to a multipolar functions basis: 

 
With Rl

i(κr) a Slater type function (  being a contraction coefficient that can be refined) and ylm 

are real spherical harmonics.  
This expression is similar to the Hansen & Coppens charge density model without any core 
contribution.  
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Joint Refinement 
Joint model: Extended Hansen & Coppens model [Deutsch2012] 
As previously seen charge and spin density were modeled thanks to similar multipolar models. 
Therefore, a joint refinement of the spin and charge densities in an extended model which 
distinguishes the up and down spin contributions, is possible. In this new model two types of 
atoms have to be distinguished: non-magnetic atoms, which are refined with a classical Hansen 
& Coppens model and magnetic atoms, for which all the density parameters are split. For 

magnetic atoms, the valence ( ), multipolar ( ) populations and expansion/contraction 

parameters (

vP ±lmP

) should be split in up and down counterparts. The extended model is described 
as: 
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where↑ and  ↓  state for spin up and down parameters. ↑κ / ↓κ  were introduced because the spin 
up and spin down electron distributions may not have the same radial extension [Becker1985]. 
This joint refinement against XRD and PND data leads to a simultaneous determination of spin 
and charge density distributions with higher level of details for spin distribution thanks to XRD 
data constraints. 
The spin density is obtained by calculating the difference between spin up and spin down 
densities: 

3 3

3 3

0 0

r r
max maxl ll l

l lm lm l lm lm
l m 0 l m 0

s( ) P ( ) P ( )

' R ( ' r ) P y ( , ) ' R ( ' r ) P y ( ,

ν ν ν νκ ρ κ κ ρ κ

κ κ θ φ κ κ θ

↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓

↑ ↑ ↑ ↓ ↓ ↓
± ± ± ±

= = = =

= − +

−∑ ∑ ∑ ∑

r

)φ
 

This Extended Hansen & Coppens model was implemented in MOLLYNX software.  

Weighing of different data sets 
One of the most intriguing question about the joint refinement is how to weight such different 
experiment with different statistics and uncertainties? Indeed, large difference between the 
numbers of reflections for each experimental data set is generally observed (~10,000 for XRD 
and ~100 for PND) [Deutsch2012, Deutsch2013]. 
Actually three weighting schemes were envisioned in order to manage these differences: 
- UNIT, where the score function C minimizes the sum of the χ² of each experiment; this model 
was used in the joint refinement (UND and XRD) by Coppens and co-workers [Coppens1981]:  

)())(( 22 xxC
j

jj ∑= χχ
 

where j stands for an experiment (XRD, UND, or PND) and  
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where i runs over all the measured structure factors Fo; Fc are the calculated ones and σ² is the 
estimated variances of Fo.  
- NLOG for which the score function C is defined as: 
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where Nj is the number of observation of data set j  
This scheme was proposed by Bell et al [Bell1996] and Gillet et al [Gillet2004] based on the 
logarithm of χ² to reduce the weighting ratio between large and small data sets and hence to 
better take into account difference in uncertainties evaluation . 
The third weighting scheme was proposed to favors even more the small data set by giving 
approximately the same weight for the small and the big data sets 
- LOG: a new weighting scheme proposed, independent from the data set size, where the score 
function is: 

))(log())(( 22 xxC
j
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Because of the large difference between the numbers of reflections for each experiment the 
NLOG or LOG scheme may prevent from neglecting the experiments with small size data 
collections (i.e. PND data set). 
The initial model for the joint refinement is the density model obtained by X-ray multipolar 
refinement only. For atoms supposed to carry a spin density, their valence and multipole 
populations are then split into up and down and refined against all data sets. 

Assumptions and constraints 
Several assumptions and constraints have to be done in order to obtain physically meaningful 
results: 
- The cell parameters are those obtained from the X-ray experiments (generally more precise 
due to the larger number of measured reflections).  
- Two sets of anisotropic atomic displacement parameters Uij and extinction parameters are 
refined from X-ray and neutron separately due to the possible difference of crystal size or 
difference in the temperatures of the data collections.  
- The electroneutrality (all X-rays monopoles) and number of unpaired electrons (spin 
monopoles) constraints are added. 

Conclusion: example of joint refinement application Cu2  
A joint refinement of X-ray neutron and polarized neutron diffraction data were done on a di-
azido cooper complex [Deutsch2014]  
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Figure 4. View of the di-azido copper complex. N atoms are represented in blue, O in red, C in grey, F in yellow and Cu 
in orange. H atoms are not shown for sake of clarity. 

The major results of this joint refinement are presented in figure 5 and figure 6 below.  

  

Figure 5. Charge and spin density maps in the plane containing Cu, O1 and N5. (a) Static deformation density map 
obtained by means of the joint refinement strategy. Isocontours are drawn for 0.01*2n e.Å-3 with n =0–13 (positive red, 
negative blue). (b) Spin density map obtained by means of the joint refinement strategy. Isocontours are drawn for 
0.01*2n μB.Å-3 with n = 0–13, spin up contours in red, spin down contours in blue. 

  

Figure 6. Spin-resolved electron densities. Left: (a) Experimental spin up (majority) and (b) experimental spin down 
(minority) valence electron densities from joint refinement of the spin-split model. The density distributions are 
represented in the Cu—N1—O1 plane (contours 0.01* 2n e.Å-3 (n = 0–12)).  
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It clearly appears that the Extended Hansen & Coppens model, is successful at precisely 
retrieving all the essential features of the electron distribution. Most important is the dramatic 
difference between spin up and spin down angular distributions in the vicinity of the copper 
nuclei (see figure 6) in perfect agreement with theoretical calculations.  
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Introduction  
What are the underlying reasons for a chemical reaction? Understanding the connection 
between electronic structure and material properties in a way that allows for “chemical thinking” 
and rational design is a principal challenge of chemical science. This contribution describes a 
conceptual framework called “Experimental Quantum Chemistry” that aims to bridge the gap 
between quantum chemical calculations and experimental measurements, including 
photoelectron and vibrational spectroscopy, X-ray structure determination, electron density 
mapping, as well as measurements of energies of activation, reaction and formation.  
Before going into details and examples, a brief summary to complementary approaches is 
warranted. In addition to older concepts, such as Lewis structures, electronegativity, acidity 
scales, and atomic radii, there exist, in principle, two overreaching approaches for analyzing 
electronic structure:  

Wavefunction-based Analyses: Molecular orbital theory arose from simplified physical models, 
such as Hückel theory,1–5 and is the premier method for calculating, analyzing, conceptualizing 
and predicting chemical transformations to date. Modern valence bond theory is very much 
complementary to this.6 Together with orbital localization procedures, these quantum chemical 
frameworks allow for different delocalized and localized bonding schemes.7–9 Valuable crossover 
methodology between molecular and extended systems, such as polymers and crystals, exists, 
including orbital projection methods, allowing for spatially localized concepts, such as atomic 
charge, orbital hybridization and bonding-antibonding character.10 
Energy decomposition analyses (or EDAs),11–17 is another set of elegant methods that can provide 
detailed insight into chemical bonding. One goal of EDA methods is often to provide definitions 
for as many interpretable energy contributions as possible (Pauli repulsion, dispersion, 
electrostatics, orbital relaxation, etc.).18 As a consequence, EDAs typically requiring iterative 
processes, projections schemes or orbital localization and rotational procedures.  
A large number of chemical descriptors, such as electronegativity, hardness, softness and 
different reactivity indices, have also been defined within the framework of conceptual Density 
Functional Theory, which quantifies responses in energy with respect to different 
perturbations.19, 20 All of these approaches and methods are useful for analyzing chemistry, but 
they share one thing in common – they all require at least one quantum mechanical calculation 
to approximate a wavefunction, or a density.  
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Quantum Chemical Topology (QCT): Several methodologies have been developed for analyzing 
the topology of densities in three dimensions, which, depending on their type, can be a 
consequence of the underlying electronic structure. The most prominent approach is the 
Quantum Theory of Atoms in Molecules (QTAIM),21 which established a paradigm for 
topological analysis of electron densities. Because the electron density is both experimentally 
observable and quantum mechanically calculable,22 QTAIM is an inherently interdisciplinary 
approach. “Interacting Quantum Atoms” is one EDA method defined for the QTAIM 
framework.13, 23 Today, Quantum Chemical Topology is a rapidly growing field of research that 
includes the study of several kinds of densities,24–26 representing, for example, aspects of electron 
localization,27–30 and non-covalent interactions.31, 32 Quantum Crystallography, the topic of this 
summer school, is a related field of research, in which X-ray data is used to constrain 
calculations of electronic wavefunctions.33, 34 
Whereas there certainly are challenges in the experimental QCT field,35,36 it is becoming 
increasingly clear that QCT methods in general, along with orbital analyses, and intricate EDA 
schemes are all highly complementary.37 Today, these different approaches are often used in 
tandem in chemistry and materials science.38,39  

Introduction to Experimental Quantum Chemistry  
At the core of ”Experimental Quantum Chemistry” (EQC) is an energy partitioning that reads 
as:40  

 

Eq. 1, here omitting thermal and entropic effects, is, in principle, general and exact within the 
Born-Oppenheimer approximation. As will be shown, this partitioning  allows interchangeable 
use of both theory and experimental data in a single framework to describe energy processes.40 

Practically, each term of Eq 1 can be approximated using experiments as indicated, or be 
calculated using quantum mechanical methods, including any Wave Function Theory or Density 
Functional Theory (DFT) methods.40,41 Both approaches will be described.  Following this, 
interpretations of the different terms will be discussed alongside some examples. Finally, a 
chemical bonding descriptor will be introduced.   
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Computational Approach 
To understand why Eq. 1 holds it helps to express its terms at different levels of quantum 
mechanical approximation. As a useful example, we first write the equivalent partitioning to Eq. 
1 within Hartree-Fock theory. The Hartree-Fock energy expression can be formulated such that,  

,        (2) 

which compares to Eq. 1. The first term, the average electron binding energy, , is then 
expressed as: 
 

,     (3) 

where φi stands for occupied spin orbitals, and  is the one electron operator of the hamiltonian 
Jij and Kij are the matrix elements of the Coulomb and exchange operators. This approximation 
to  invokes Koopmans’ theorem and equals the average of the eigenvalues, εi, of all occupied 
molecular orbitals. One general advantage with this approach is that Δχ, ̅ , i.e. the change in the 
average electron binding energy over the course of a transformation, appears rather insensitive 
to the level of theory.40 The interpretation of χ, ̅  and Δχ, ̅  will be discussed in more detail below.   
The second term of Eq. 2, the nuclear-nuclear repulsion, is a direct consequence of the 
molecular structure, and calculates as the classical Coulomb repulsion term:  

,        (4) 
where M is the number of nuclei. The third term of Eq. 2, the average electron-electron 
interaction energy, Eee, writes as:   

,       (5) 
which shows that Eee only represents electron-electron interactions, expressed in terms of the 
same Coulomb and Exchange operators that enter χ, ̅ (HF). Note that just like in Eq. 1, the Eee(HF)-
term shows up with a negative sign in Eq 2. This is to correct for the double counting of 
electron-electron repulsion in the χ, ̅ -term, and is a general consequence of formulating the 
energy expression in this manner.   
Estimates to the total energy E (or ΔE of a transformation) can, of course, be sensitive to how 
accurately correlation effects are treated. Such effects are typically better captured using DFT. 
The corresponding EQC-partitioning of the KS-DFT energy expression reads as: 
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,         (6) 
where Vee(ρ) is the classical electron-electron Coulomb repulsion energy, EXC is the exchange-
correlation energy, and the middle term in the Eee(KS)-expression is the exchange-correlation 
potential. For extended structures, χ, ̅  can be obtained from the density of states (DOS) as,   

,       (7) 
where εf is the Fermi energy. 
It is also possible to define χ, ̅  more generally without the explicit need for orbitals, 

 ,    (8) 
where τL(r) is the Laplacian form of the kinetic-energy density, ν(r) is the external potential, ρ(r) 
is the electron density, and P(r,r2) is the diagonal of the two-electron reduced density matrix, all 
which can be extracted from any single- or multi-reference wavefunction. In multi-reference 
descriptions, the interpretation of χ, ̅  in terms of ionization potentials becomes approximate, but 
its interpretation as an inherent average of electron binding energies remains. Within this 
coordinate representation, the analogous expression to Eq. 1 reads as: 

      (9) 

Experimental Approach  
All of the different terms of Eq. 1 can be estimated experimentally. Total energies, E, can be 
obtained as a summation of adiabatic ionization potentials of an atom or molecule.40 For 
example, for helium, E = IP(He) + IP(He+).  
Whereas E can be obtained experimentally for some systems, it is often more relevant to 
consider relative energies. ΔE determine the outcomes of most chemical and physical processes, 
and can correspond to a chemical reaction, such as a bond formation, the thermodynamics of a 
combustion reaction, the kinetics of passing over a transition state barrier, or the vibration about 
a bond equilibrium. For chemical transformations, estimates of ΔE requires accurate 



77Erice International School of Crystallography • 52nd Course, 1-10 June 2018

thermochemical data (for example, heats of formation). These can be corrected for vibrational 
effects by identifying fundamental vibrational frequencies, νi, from IR and Raman spectroscopy,  

,        (10) 
where EZPE can be estimated within the harmonic approximation as ½h∑νi.42 
Experimentally, the average electron binding energy, χ, ̅ , can be estimated as: 

,        (11) 
where n is the number of electrons (given by the stoichiometry), εi is the binding energy of an 
occupied electronic level i, and di is its electronic degeneracy. Note that χ, ̅ is not the same energy 
as E in Eq. 1. In the helium example, E = IP(He) + IP(He+) whereas χ, ̅ = IP(He). Estimating χ, ̅  of 
a system (or Δχ, ̅  for a process) requires the combined use of X-ray photoelectron spectroscopy 
(XPS, for core electrons) and ultraviolet photoelectron spectroscopy (UPS, for valence levels).40 
The Allen electronegativity scale have demonstrated the feasibility of this approach on single 
atoms,43 and it is possible to estimate χ, ̅  also for larger systems.40 The methodology is, in 
principle, straightforward: by knowing the energy of the radiation used, Ephoton, and the kinetic 
energy of the ejected electrons, Eelectron, the binding energy, εi, of an energy level i can be obtained 
as,   
εi = Ephoton – Eelectron.        (12) 
 
However, the interpretation of photoelectron spectra can be challenging when ionization arises 
from strongly coupled states.44–46 When analyzing experimental PES spectra, quantum 
mechanical calculations can therefore be used for comparison and level-identification. Because it 
is possible to compare with theory, detailed analysis of ionization cross-sections in molecules is 
not essential; only identification of the main ionization energies is necessary.  
Examples: Experimental applications of Eq. 1 can to a large extent rely on literature data of well-
characterized molecules and atoms. Table 1 shows an EQC partitioning of four different 
transformations. Where does these values come from? 
The first reaction, which describes H2 bond formation, requires knowledge of the experimental 
heat of formation (+2.259 eV) and ionization potential (13.598 eV) of the hydrogen atom, and 
the bond distance (0.7414 Å), fundamental stretching frequency (4401.2 cm-1) and ionization 
potential (15.426 eV) of molecular hydrogen. The bond energy, ΔE, can then be calculated 
according to Eq 10: 0 - 2*2.259 - 0.273 = -4.792 eV, where 0.273 eV is the zero-point energy of 
H2. In Table1, all energies are counted in eV per electron, so that ΔE/n = -4.792/2 = -2.396 eV e-1. 
Δχ, ̅  for the H2 bond is calculated as -15.426 - (-13.598) = -1.83 eV e-1, which means that 
electrons are more strongly bound to H2 than they are in the H atom. The third term in Eq. 1, 
the nuclear-repulsion, VNN, is evaluated following Eq. 4. ΔVNN will increase in a transformation 
where nuclei on average come closer together, and calculates as + 9.716 eV e-1 in the formation 
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of H2.  The last term in Eq. 1, ΔEee/n = -10.285 eV e-1, is indirectly obtained following knowledge 
of the other terms of the equation.  

Table 1. EQC energy partitioning of four simple reactions.a

Reaction: ΔE/n Δχ, ̅  ΔVNN/n -ΔEee/n 
2H → H2, dexp = 0.741 Å -2.396 -1.828 9.716 -10.285 
H + e- → H- a -0.377 6.045  0.0 -6.422 
H2 → H2

+ + e-, dexp = 1.052 Å 7.870 0.457  -2.872 10.285 
He → He+ + e- a 12.293 2.621  0.0 9.672 

aExperimental data from the NIST Chemistry WebBook. Energies in eV e-1

The EQC-partitioning of the second and third processes listed in Table 1 can similarly be 
performed knowing the experimental electron affinity (+0.754 eV) of the hydrogen atom, and the 
molecular bond distance (1.052 Å) and the bond energy (2.651 eV) of H2

+. Note that some 
exothermic processes, such as the electron attachment to hydrogen, are hindered by a lessened 
electron binding (Δχ, ̅ >0) in the final state. Situations where the Δχ, ̅ -term is clearly acting 
against a favored forward reaction is, in fact, a common occurrence and an indicator attributable 
to some form of charge flow.41 
For the last example reaction, helium ionization, it suffices to know the first (24.587 eV) and 
second (54.418 eV) ionization potential, to calculate  ΔE and Δχ, ̅ , as was previously mentioned. 
The most unique property of the EQC-partitioning is that it allows for experimental estimates of 
electron-electron interaction energies: Because there are no electron-electron interactions in H, 
H2

+ or He+, the ΔEee -values listed in Table 1 actually provide absolute estimate of the electron-
electron interactions in H2, H- and He. Electron-electron interaction energies are fundamental 
quantities that underpin all chemical and physical processes and properties, and that previously 
have only been obtainable from quantum mechanical calculations. In these examples, the 
obtained electron-electron interaction energies in H2 (10.285) > He (9.672) > H- (6.422) eV e-1 
are, in a way, indirect energy-derived estimates of the relative sizes of these fundamental two-
electron-systems.  
Further Partitioning: Eee may be further decomposed into the classical electron-electron 
Coulomb repulsion, EC, and all remaining non-classical interactions, EQ, such that Eee = EC + EQ.40 
This further partitioning is not necessary for the parts of the analysis developed thus far. 
However, because EC is calculable provided sufficiently accurate mapping of the electron density, 
it can offer additional insight into chemical bonding. Experimental determination of electron 
densities via multipole refinement is a well-established procedure.22,47,48  
Because the electrostatic terms VNN and EC both diverge in an infinite crystal they are only 
strictly attainable for isolated molecular systems, and not for extended materials. However, it is 
still possible to approximate these terms for molecular solids, if intermolecular interactions are 
assumed to be small. Omitting the surrounding lattice is common practice when comparing, for 
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example, crystallographically determined molecular structures with calculations on molecules in 
a vacuum.49 In Eq. 1, the terms VNN and -Eee are large and canceling, and for systems with truly 
extended electronic structures (1D-, 2D-, or 3D-polymers), Eq. 1 is reduced to Eq. 13:  

 
Interpretation and Use of the Average Electron Binding Energy, χ, ̅  
One important term in Eq. 1 is the average electron binding energy, χ, ̅ . Figure 1 demonstrates 
some of the incantations of χ, ̅  resolved in energy, real and reciprocal space, in different systems. 
Δχ, ̅ , can be equated to changes in the electronegativity of the system (Fig 1a and 1b).40, 50 This 
equality originates from Allen’s electronegativity scale,50 which agrees well (it correlates linearly) 
with most other scales of electronegativity. Indeed, there are many definitions to 
electronegativity,50–55 and the concept has a rich history.56 Electronegativity is maybe the most 
important descriptor in chemistry, and it lies at the very heart of chemical rationales and 
intuition, connecting to several different fields of research.57, 58 Eq. 1 is an energy partitioning 
that presents both χ, ̅ and Eee in clear relation to the total energy E. This means that the 
relationship shown in Eq. 1 can be used to understand when and why electronegativity 
arguments work in explaining experimentally observed trends, and what it means when they fail. 
This ability might prove useful for guiding synthetic chemistry, where such quick rationales are 
often used.  
A related chemically important interpretation of χ, ̅ is as the average orbital energy, and nΔχ, ̅ as 
the net orbital stabilization over a transformation. This connects it to ideas of covalency, and 
molecular orbital theory, so prevalent for the rationalization of chemical bonding. In extended 
systems, χ, ̅  also appears in the theoretical framework of moments of the electron distribution, 
used for describing factors behind solid-state structure (Fig 1c).59, 60  
χ, ̅  can be resolved in real space, which is interesting from a QCT perspective (Fig. 1d). When 
this is done, χ, ̅ (r)is referred to as the local ionization potential.61 A one-determinant expression 
for χ, ̅ (r) reads as,  

,        (14) 
where ρi(r) is the electronic density of orbital φi. χ, ̅ (r) also can be obtained from 
multideterminant methods.62 χ, ̅ (r) plotted on electron density isosurfaces have been used to 
calculate topological descriptors useful for predicting molecular reactivity,63, 64 local 
polarizability, and electronegativity.58 Experimental determination of molecular orbital densities 
is becoming possible,65,66,67 and experimental estimates to χ, ̅ (r) might be within reach.  
The distribution of χ, ̅  in reciprocal space, χ, ̅ (k), can also be analyzed (Fig. 1e).  Whether or not 
this density can provide insight into the effects of periodicity on chemical bonding in extended 
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matter is under active study. In the spirit of EQC, χ, ̅ (k) is both theoretically calculable as well as 
experimentally accessible, using angle-resolved photoelectron spectroscopy (ARPES). 

 

Figure 1. Examples of the average binding energy χ, ̅  resolved in energy space, real space and reciprocal space. Mention 
of calculations refer to density functional theory. A) Experimental χ, ̅  for valence electrons of first and second period 
atoms obtained from reference 43. B) χ, ̅  calculated for selected molecules. C) χ, ̅  calculated for the valence bands of 
graphene. D) χ, ̅ (r) calculated on the 0.001 e/bohr3 isosurface of anisole. Energies (in eV) are denoted as: red > 12.4 > 
yellow > 9.7 > green > 9.1 > blue. Light blue dots denote local minima on the surface. Reproduced from reference 68 with 
permission. E) χ, ̅ (k) calculated along the special symmetry points of graphene.    

Q – A Descriptor of Chemical and Physical Transformations 
Conventional chemical descriptors, such as atomic charge, atomic radii, electronegativity etc., 
are often essential for molecular design. Such descriptors have in more recent times also become 
valuable input data for machine learning approaches aimed at high throughput material 
discovery.69 Eq. 15 describes Q, one effort to condense the EQC energy partitioning into one 
value that is descriptive of a given transformation,  

   (15) 
Q quantifies the balance between Δχ, ̅ , attributable to electronegativity equalization and orbital 
stabilization, and the combined Δ(VNN -ΔEee)/n-term, which quantifies charge-drift due to 
bonding interactions. The Q descriptor is unbound and unit less. 
When Q = 1, the Δχ, ̅ -term completely describes ΔE, and the situation is attributed to ‘perfect 
covalency’. In contrast, when Q = –1, Δχ, ̅  nets to zero and the Δ(VNN -ΔEee)/n-term instead 
completely describes ΔE. The latter situation is associated with ‘perfect ionicity’. For 
energetically favorable interactions where Q>1, electron-electron interactions, described by a 
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positive Δ(VNN -ΔEee)/n-term, become more significant. A Q value above 1 signifies increasing 
degrees of electron correlation effects acting against an energetically favorable event. Similarly, 
when Q < –1,  electron-electron interactions play an increasingly important role, but with 
reversed sign, i.e. the Δ(VNN -ΔEee)/n-term is negative.  
Q has been used to construct a veritable map of bonding interactions and is, when plotted 
against ΔE for the formation of diatomic molecules, able to distinguish between covalent, 
electrostatic, dispersion bound, polar, ionic and “metallogenic” (attributed to species that 
condense to form metals) interactions. This has suggest a tantalizing utility in inferring physical 
properties of condensed materials by studying smaller systems.41 Q has also proven capable of 
distinguishing between such subtle effects as red- vs. blue-shifting hydrogen bonds,70 whose 
nature is a long standing controversy. Others have implemented Q to study molecular oxides, 
and concluded it to be a valuable complement in bonding analysis.37 
Some examples of Q for a representative range of bonding interactions in diatomic molecules are 
shown in Table 2, alongside the EQC partitioning. Note especially that for bond formations 
attributable to charge-transfer, polarity, or “metallogenic” character, Δχ, ̅  is destabilizing 
(positive) and Q is negative.    

Table 2. Hybrid theory/experimental EQC-partitioning of diatomic bond formation.a

 ΔE/n Δχ, ̅  ΔVNN/n -ΔEee /n Δ(VNN -ΔEee)/n Q 
2 H → H2  −2.396 −1.83 +9.72 −10.28 −0.57 0.5 
C + O → CO  −0.806 −2.02 +43.76 −42.54 +1.22 4.0 
H + F → HF  −0.617 +0.42 +14.14 −15.18 −1.04 -2.4 
2 Li → Li2  −0.181 +0.54 +8.08 −8.80 −0.72 -6.9 
Na + Cl → NaCl −0.153 +2.21 +40.74 −43.10 −2.36 -29.9 

aΔE and ΔVNN are experimental, Δχ, ̅  is from DFT. Energies are in eV e-1. Q is unit less. Data is reproduced 
from reference 41 with permission.  

Summary and Conclusions  
The Experimental Quantum Chemistry (EQC) method, shown as Eq.1, enables the 
interchangeable use of theoretical calculations and experimental data in a single framework to 
describe energy processes.40 The Δχ, ̅  term is conceptually valuable in that it straightforwardly 
quantifies the average-change of electron binding over a transformation. χ, ̅  can be resolved in 
energy, real and reciprocal space, and Δχ, ̅  can be attributed to central chemical concepts such 
as electronegativity equalization, covalency and orbital stabilization. ΔVNN quantifies changes to 
the nuclear structure, and ΔEee summarizes the changes to all forms of electron-electron 
interactions, including correlation and exchange energies. These EQC terms, including 
experimental estimates to ΔEc, and indirect quantification of ΔEq over a transformation, might 
offer useful wavefunction constraints and complement other advances in quantum 
crystallography.  
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A descriptor Q, defined by Eq. 15, offers an effective simplification for the EQC energy 
partitioning, and is a straightforward way to analyze the underlying electronic structure changes 
of chemical or physical transformations on multiple length-scales, calculated or measured. A 
python script for automated EQC-partitioning and calculation of Q can be found at 
https://github.com/martinrahm/X-analysis. The script is currently limited to single-reference 
calculations, and parses the output of several common quantum mechanical software, including 
Gaussian and ORCA.   
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Introduction 
Refinement is the process of iterative alteration of the molecular model with the goal to 
maximize its compliance with the diffraction data” (Müller, 2009).  The structure solution from 
direct methods, charge flipping, intrinsic phasing, or Patterson methods is frequently already 
fairly good.  However, the atomic coordinates are not quite accurate, the atom types of some 
atoms have been assigned incorrectly (if at all), and details of the structure are missing (hydrogen 
atoms, disorders, solvent molecules, etc.).  
It is important to note that the atomic positions in the first solution, sometimes called the initial 
model or the trial structure, are not the direct result of the diffraction experiment but an 
interpretation of the electron density function calculated from the measured intensities and the 
somehow determined phase angles.   
Critically assessing the initial model and making sensible changes usually affords an improved 
structural model and better phases can be calculated from the atomic positions of this improved 
trial structure.  This, in turn, allows re-determination of the electron density function with 
higher accuracy.  From the new, more accurate electron density map, an even better model can 
be derived, which leads to even better phase angles, and so forth.  In every such cycle, 
adjustments to the atomic model are made: atom types are changed, missing atoms are 
introduced, etc.  This iterative process is called structure refinement. 
Generally speaking, structure refinement consists of three major steps: First, close examination 
of the  
Fo-Fc map (see below) helps to introduce new atoms and remove “bad” ones.  Second, when all 
non-hydrogen atoms are found, the atoms can be refined anisotropically.  And third, once the 
model is anisotropic, the hydrogen atom positions can be determined or calculated.   

Electron Density Maps 
Simply put, the Fourier transform of the diffraction pattern is the three-dimensional electron 
density function, which can be expressed in terms of electrons per cubic Ångstrom and 
graphically represented in different ways.  Crystallographers rely on several so called electron 
density maps, the most important ones are the following three: 
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Fo map:  Electron density calculated using observed structure factures combined with phases 
calculated from the atomic model.  This map shows the observed electron density; its accuracy 
depends largely on the accuracy of the phases. 
Fc map:  Electron density calculated from structure factors and phases calculated from the 
atomic model.  This map shows the electron density according to the model only.   
Fo-Fc map:  The difference between the two other maps (model subtracted from experimental 
density).  This map exhibits values close-to-zero for parts of the structure where the model is 
consistent with the experimental density, it shows large positive values at places where the 
model should have an atom, but does not, and large negative values at places where the model 
has an atom that should not be there.  Weaker positive or negative values for the Fo-Fc map could 
point to wrongly assigned atom types.  The Fo-Fc map is often called difference density map and 
is the one with the most practical relevance of the three.   
Figure 1 shows part of a trial structure, namely a Cp ring, alongside the corresponding region of 
the Fo and Fo-Fc maps.  Examination of the electron density maps shows that the ligand in the 
current model is not actually a Cp ring but, in fact, a Cp* ring.   
 
 
 
 
 
 
 
 

Figure 1. Left: Trial structure (a Cp ring).  Middle: Trial structure with superimposed Fo map.  Right: Trial structure with 
superimposed Fo-Fc map.  Interpretation of the residual electron density as hydrogen atoms is not sensible as (a) the 
density is too high and (b) the location of the electron density maxima is too far from the carbon atoms of the Cp ring.   

Anisotropic Displacement Parameters 
Once all non-hydrogen atoms have been assigned correctly, the structure can be refined 
anisotropically.  It is reasonable to assume that atoms move with different amplitudes in 
different directions.  Instead of describing an atom as a sphere, it therefore is described as an 
ellipsoid; the elements of the 3X3 matrix defining the ellipsoid are called anisotropic 
displacement parameters (ADPs).  Since the ADP-matrix, usually called the Uij-matrix, is 
symmetrical, this adds only six parameters for each anisotropic atom, not nine.  Size and shape 
of the thermal ellipsoids are excellent indicators for problems with the crystallographic model.  
Figure 2 shows a Cp* ring with both isotropic and anisotropic modeling. 
The representation of the Cp* ring shown in Figure 2 is called a thermal ellipsoid plot 
(sometimes also ORTEP-style plot, named after Carroll Johnson’s Oak Ridge Thermal Ellipsoid 
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Plot software) and individual atoms are represented by ellipsoids that indicate the magnitude 
and direction of the thermal vibration of each non-hydrogen atom in the molecule.  The thermal 
ellipsoids are scaled to include the space occupied by a subset (typically 50%) of the electrons 
associated with the atoms they represent.  Significantly too large or too small thermal ellipsoid 
volumes indicate incorrect atom type assignment.  For easier comparison, the volume of a 
thermal ellipsoid can be represented by a single numerical value, the U-equivalent value (Ueq).  
The Ueq is defined as one third of the trace of the orthogonalized matrix Uij describing the 
anisotropic displacement-ellipsoid.   
 
 
 
 
 
 
 
 
 

Figure 2. Isotropic (left) and anisotropic (right) refinement of the carbon atoms in a Cp* ring. 

In theory, all atoms within a molecule should have roughly the same thermal ellipsoid size, and 
thermal ellipsoids should not be strongly prolate or oblate; however some atoms in a molecule 
can move more freely than other atoms (like terminal groups or moieties that can rotate about 
one of the bonds).  Therefore, terminal atoms generally show somewhat larger and possibly 
somewhat more elongated ellipsoids when compared to atoms that are, for example, part of a 
cyclic moiety or the central atom in an organometallic complex.  Strongly elongated thermal 
ellipsoids may indicate disorder (see Figure 3). 

 
Figure 3. Anisotropic displacement parameters of a disordered ethyl group; on the left without and on the right with 
modeling of the disorder (empty lines for the minor component).  When disorder is ignored, the refinement software 
tries to describe both atom positions with one elongated ellipsoid.  Figure reproduced from Müller, 2006. 

If the thermal ellipsoid (or the corresponding Ueq value) for a given atom in a molecular model is 
much smaller or larger than those of similarly positioned atoms, the atom in question may have 
been incorrectly assigned (e.g., nitrogen versus carbon).  As mentioned above, thermal ellipsoids 
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are typically scaled to represent 50% electron density.  That means that, for example, the thermal 
ellipsoid of an oxygen atom in a molecular model contains four electrons, the ellipsoid of a 
carbon three.  If an oxygen atom is incorrectly assigned the element type carbon, the resulting 
thermal ellipsoid will be too small, as the volume containing three electrons in an oxygen atom is 
smaller than that containing four electrons.  Figure 4 shows a tetrahydrofuran molecule where 
all five atoms were modelled as carbon; it is easy to identify which of the five atoms is the oxygen.   

 

Figure 4. A: Cartoon of a tetrahydrofuran (THF) molecule.  The dashed circles in grey represent the atoms, the white 
rimmed black circles the volume increment corresponding to three electrons.  B: Isotropic displacement parameters at 
the 50% level of a THF molecule where all five atoms were refined as carbon; the sphere representing the oxygen atom is 
much smaller than the other spheres.  C: The same THF molecule with correct atom type assignment; all spheres exhibit 
approximately the same volume.  Figure reproduced from Müller, 2006. 

A real-live case where thermal ellipsoids were used to identify the nitrogen and oxygen atoms in 
the structure of a natural compound (isolated and purified from nature, not synthesized in a lab) 
is shown in Figure 5.  Refining all atoms as carbon makes the heavier, more electron rich 
nitrogen and oxygen atoms exhibit smaller thermal ellipsoids.   

 

Figure 5. Thermal ellipsoids can help to identify atom types:  Even though the atoms have the correct atom names in the 
figure above, all atoms in the model were refined as carbon atoms.  As a result, the thermal ellipsoids for atoms that are, 
in fact, nitrogen and oxygen are significantly smaller than those of actual carbon atoms. 
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Thermal motion of atoms in the crystal can also lead to large ADPs.  The very large ellipsoids in 
the anion N(SO2F)2

– at room temperature can be explained either with strong atomic movement 
or disorder (Figure 6).  In this case, the generally preferred staggered conformation at 112K and 
the ecliptic conformation at 290K make this look more like a disorder.  This is corroborated by 
the bond lengths.   

 

Figure 6. Thermal ellipsoid representation of the same structure at 290K (left) and 112K (right).  At 290K all S-O and S-F 
distances are similar and between 1.24 and 1.36 Å.  At 112K, the different bonds can be easily distinguished: S-F: 1.57, 
and S=O: 1.42 Å.  Figure courtesy of George M. Sheldrick. 

Least-Squares Approach 
The diffraction experiment gives us intensities, which correspond to squared structure factor 
amplitudes (I ∼ F2).  Structure factors F are complex numbers, i.e. vectors in the Argand plane: 

( ) ( )[ ]∑ +++++=
i

iiiiiii lzkyhxilzkyhxfhklF ππ 2sin2cos)(
 

Summation over all atoms i.  F: structure factor; f: atomic scattering factor; h,k,l: Miller indices; x,y,z: atom coordinates. 

 
By means of Fourier transformation, a complete set of structure factors is calculated from the 
atomic model.  The calculated intensities are then compared with the measured intensities, and 
the best model is that, which gives the smallest value for the minimization function M. 

( )∑ −=
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F: structure factor; o: observed; c: calculated; w weighting factor (derived from σ). 

 
In order to find the minimum, the first derivatives of M have to be set equal to zero with respect 
to each parameter, resulting in one equation per parameter to be refined.  Unfortunately, those 
equations are not linear (they contain trigonometry terms and exponential functions); however 
given a reasonably good starting model (i.e. structure solution) one can calculate shifts of 
parameter values rather than the parameters themselves.  This is done from a set of linear 
equations (Taylor series about all starting model parameters using only the first-derivative 
terms). 
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This is acceptable under the assumption that the required shifts are so small that the higher 
terms are negligible.  Convergence is slow (usually needs 6 to 10 cycles or more) but with every 
cycle the shifts become smaller and the approximation holds better.   
If the starting model is not good enough, the required shifts may be too large and the method 
may not converge to the correct minimum.  Damping limits the amount of shift for example 
using the Marquardt algorithm or by scaling all shifts by a number <1 (for example 0.7).  
Constraints and restraints also stabilize the refinement (see below).   

Quality of the Model 
The quality of a crystallographic model can be assessed by several figures of merit.  The best 
criterion is probably the standard uncertainties of the bond distances; most commonly, however, 
the residual values wR and R.  Another commonly used figure of merit is the Goodness of Fit 
(GoF or GooF or simply S). 
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wR2: Most closely related to refinement against F2.   R or R1: Most popular R-value, based on F. 

 

( )
( )

2/1222

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= ∑
PR

co

NN
FFw

S
 

GooF: S is supposed to be > 1.0 
F: structure factor; o: observed; c: calculated; w weighting factor (derived from σ).  NR: number of independent reflections; 
NP: number of refined parameters.  

Parameters 
A parameter is any quantity that is adjusted during structure refinement.  For every generally 
located atom in the model, there are three positional coordinates (x, y, z) and six anisotropic 
displacement parameters to be refined (only one displacement parameter for isotropic atoms).  
In addition, there is one overall scale factor per structure and possibly several additional factors, 
like a twin ratio for twinned structures, a Flack-parameter for non-centrosymmetric structures 
(Flack, 1983), a parameter for extinction, etc.  Some refinement programs like SHELXL 
(Sheldrick, 2015) allow for additional free variables to be refined that can be assigned to various 
parameters like occupancy factors or interatomic distances.  Altogether, the number of 
parameters is roughly nine to ten times the number of independent atoms in a structure.  The 
International Union of Crystallography (IUCr) recommends for a stable refinement a minimum 
data-to-parameter-ratio of > 8 for non-centrosymmetric structures and > 10 for 
centrosymmetric structures.  This corresponds to a resolution of ca. 0.84 Å or a 2Θ angle of 50° 
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(Mo) or 135° (Cu).  Constraints and restraints improve the data-to-parameter-ratio: constraints 
remove parameters, restraints add data. 

Constraints 
Constraints are mathematical equations, rigidly relating two or more parameters or assigning 
fixed numerical values to certain parameters, hence reducing the number of independent 
parameters to be refined.  Site occupancy factors are constraints present in almost every 
structure.  Even for disordered atoms the sum of the occupancies is usually constrained to add 
up to 1.0.  Another typical constraint is the rigid group.  Atoms within a rigid group are refined 
as a unit that does not change its shape and only translation and rotation of the group as a whole 
are refined.  Hydrogen atoms can be “placed on mathematically calculated positions and refined 
using a riding model”.  That means X-H distances and H-X-H or H-X-Y angles are constraint to 
certain values, not the actual hydrogen positions!  
Atoms on special positions require constraints for their coordinates, occupancies and sometimes 
also their ADPs.  Figure 7 summarizes the special position constraints to be applied to an atom 
residing on the b-axis (for example in the monoclinic space group P2) 
 
 
 
 
 
 
 
 
Figure 7. Atom located on a twofold axis along b.  A 180° rotation about b must not change the position of the atom or 
the shape of the thermal ellipsoid.  From the first condition follows (x, y, z) = (-x, y, -z), which is true only for x = z = 0.  
The second condition dictates: (U11, U22, U33, U23, U13, U12) = (U11, U22, U33, -U23, U13, -U12), which is only true for U23 = 
U12 = 0.  The left-hand side of the figure shows an incorrectly shaped thermal ellipsoid mapped onto itself by the twofold; 
the right-hand side shows a correctly shaped one.  Figure reproduced from Müller, 2006. 

Restraints 
Restraints are assumptions used to introduce chemical or physical information into a refinement 
as additional experimental observations.  Restraints are treated as data (with a standard 
uncertainty, also called elasticity) and in the presence of restraints the minimization function 
introduced above changes as follows: 

( ) ( )22222 1 otco RRFFwM −+−= ∑∑ σ  
Minimization Function including restraints: F: structure factor; o: observed; c: calculated; w weighting factor; σ: standard 
uncertainty assigned to the restraint; Rt: target value for restraint quantity; Ro: actual value as observed in the molecular 
model.  

It is apparent that restraints are treated exactly like data against which the parameters are 
refined.  In many refinements, restraints may not be needed at all.  However, when the data-to-
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parameter ratio is low, or when correlations among certain parameters occur (e.g. for the 
refinement of disorders, pseudo-symmetry or twinned structures), restraints can become 
essential.  “Restraints should be used with great care and only if justified.  When appropriate, 
however, they should be used without hesitation, and having more restraints than parameters in 
a refinement is nothing to be ashamed of.” (Müller, 2009) 
In general, one can distinguish two different types of restraints: direct restraints and relative 
restraints.  Direct restraints assign outside values to certain parameters of a model while relative 
restraints, which are also called similarity restraints, relate equivalent parameters within a 
model.  The most important restraints are geometrical restraints and restraints on anisotropic 
displacement parameters (ADPs); both geometry- and ADP-restraints can be either direct or 
relative in nature.  To include, for example, information about carbon–carbon single bonds into 
a refinement, one could either assign a sensible target value to all C—C bonds (say 1.54 Å) or one 
could specify that all C—C bonds in the model should have approximately the same length 
whatever that value may be.  The first approach describes a direct restraint taking into account 
results from spectroscopy and/or other sources like databases, the second approach is that of 
similarity restraints.  The advantage of relative restraints is that there is no need for “outside” 
information and also that the refinement converges well.  The disadvantage of relative restrains 
lies in potentially underestimated standard uncertainties of bond lengths and angles, especially 
when many restraints are used.  In general, relative restraints can be considered milder and, 
whenever possible, should be given a preference over direct restraints.  Figure 8 shows geometry 
restraints applied to Cp*.  

 

Figure 8. Geometry restraints for a Cp* ring.  All five bonds of the Cp-core are approximately the same (red lines), all 
C—C single bonds are approximately the same (orange lines), the five C-C-C-angles in the Cp-core are all similar (dark 
green lines) and the ten C-C-C-angles formed by the methyl groups relative to the Cp-core are similar (light green lines).  
SHELXL treats angular restraints as restraints on 1,3-distances.  Typical standard uncertainties are 0.02 Å for 1,2-
distance restraints and 0.04 Å for 1,3-distance restraints  In addition to the distance restraints one may assume that all 
ten atoms of the Cp* ligand reside on one common plane (typically within 0.1 Å3).   
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It is fair to assume that atoms bound to one another move similarly, both in direction and 
amount.  One can restrain the anisotropic displacement parameters of two atoms in the direction 
of the bond between them to be equal within a given standard uncertainty (e.g. 0.01).  This is 
called a “rigid bond restraint”.  It can also be assumed that atoms that are near one another in a 
structure move in similar directions with approximately similar amplitudes.  Therefore, one can 
restrain atoms close to one another to have the same Uij components within a given standard 
uncertainty (e.g. 0.04).  This is called a “similar-ADP restraint”.  The second assumption is much 
bolder then the first one, hence the much larger standard uncertainty.  In addition, one can 
restrain anisotropically refined atoms to behave approximately isotropically within a given 
standard uncertainty (say 0.1 Å2).  Figure 9 summarizes commonly used ADP-restraints. 
 

rigid bond similar ADP isotropic 
behavior

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Common ADP restraints. Figure courtesy of Thomas R. Schneider. 

Libration 
In X-ray and electron crystallography, there is a conterintuitive effect that lets bond distances 
appear shorter at higher temperatures, even though the unit cell gets slightly larger at the same 
time.  The reason for this is libration.  Especially terminal atoms show approximately circular 
motion with the bond as radius.  In anisotropic refinement, this motion is fitted as an ellipsoid, 
the center of which lies inside the circle of motion, while the atom is located on its periphery.  
This effect makes the bond distance appear shorter than it actually is (see Figure 10).  Depending 
on the movement of the atoms, the correction that needs to be applied is somewhere between 
0.001 – 0.1 Å.  Libration is much stronger at higher temperatures and particularly pronounced 
for hydrogen atoms, small ions, like NO3

–, BF4
–, ClO4

–, PF6
–, and for –CF3 groups.  For most low-

temperature structures, the effects of libration are smaller than the standard uncertainties of the 
bond lengths and it is not necessary to correct for it, however a simple equation estimating the 
librational bond shortening as a function of atomic motion is given as part of Figure 10.   
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Figure 10. Apparent bond shortening due to libration in the example of two atoms, A and B.  The average displacements 
of atoms A and B are described by UA and UB and the ellipsoids fitting the atomic motion are drawn as a black line 
(almost circular for atom A and significantly elongated for atom B).  The calculated distance r is too short by the length 
Δr.  Δr can be estimated according to the equation on the left-hand side.  Figure courtesy of George M. Sheldrick. 

B

Hydrogen Atoms 
Once all non-hydrogen atoms are refined anisotropically, hydrogen atoms can be introduced.  
Hydrogen atoms interact with the x-ray or electron beam only comparatively weakly and, 
especially in the presence of heavy atoms, hydrogen atoms are notoriously difficult to detect with 
X-ray and electron diffraction methods.  As a result, their location can be determined less 
accurately.  Most notably, the relatively high electron density between the atoms and libration 
effects make X—H bonds appear too short (Figure 11). 
 

 

Figure 11. Relatively high electron density between hydrogen and carbon (or whichever other atom the hydrogen atom 
may bind to) as well as libration make bond distances involving hydrogen appear significantly shorter based on X-ray and 
electron diffraction data when compared to neutron diffraction.  Figure courtesy of George M. Sheldrick. 

Considering the difficulty of determining hydrogen positions with accuracy, it is customary to 
include hydrogen atoms into their geometrically calculated positions.  In most cases, the 
positioning of hydrogen atoms bound to carbon in an atomic model during the refinement of an 
X-ray crystal structure is done entirely without any or only very little direct information from the 
diffraction experiment, as the standard bond lengths and angles are well known.  Hydrogen 
atoms on aromatic carbons, CH, CH2 groups, and most CH3 groups are straightforward.  Only 
the torsion angle of CH3 in acetonitrile, Cp*, toluene, etc. needs to be determined, as staggering 
the hydrogen atom geometry is not an option in such cases (Figure 12).   
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Figure 12. Example of hydrogen atom placement on methyl groups.  A: The hydrogen positions in an ethyl group can be 
calculated from the carbon atoms alone (assuming a staggered arrangement).  B: The same situation as in A, but in 
Newman projection, showing the torsion angle as a dotted line.  C: Methyl group in acetonitrile: the circle through the 
hydrogen atoms corresponds to the line in space on which the hydrogen atoms must lie.  D: Electron density along this 
circle (simulated data on arbitrary scale the horizontal axis gives the place on the circle in degrees from an arbitrary 
starting point): expected are three maxima, 120° apart, which correspond to the location of the hydrogen atoms on the 
circle in C.  Figure reproduced from Müller, 2006. 

After their introduction, the hydrogen atoms are then refined using a riding model (see section 
about constrains above).  The riding model has the advantage that no additional parameters 
need to be refined when hydrogen atoms are introduced in this fashion (except perhaps torsion 
angles for methyl groups).  On the other hand, potentially acidic hydrogen atoms (those bound 
to nitrogen or especially oxygen) and hydrogen atoms that are important for the chemistry of the 
molecule at hand can and should still be included into the model from electron density maxima 
and then refined semi-freely with the help of distance restraints.  Hydrogen atoms of water 
molecules must be detected in the experimental electron density or else they cannot be included 
into the model, although sometimes one can infer from the surrounding potential hydrogen 
bonding partners where the water hydrogen atoms might be.   
Even more difficult to detect can be hydrogen atoms in heavy metal hydrides.  The sometimes 
relatively strong Fourier truncation ripples close to heavy atom positions can overpower the 
rather weak electron density maxima representing the hydrogen atoms.  Exceptionally accurate 
and especially complete high quality data and proper scaling are required to distinguish those 
hydrogen atoms from the background noise.   

Final Remark 
The pages above describe the course of a typical crystal structure refinement based on X-ray 
diffraction data.  For electron diffraction, the same principles apply, however the data quality is 
usually lower.  Most notably, the error distribution is less Gaussian for electron diffraction data 
and structure refinements don’t converge as readily as they do for structures based on X-ray 
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data.  That means electron-crystallographers may need to rely more heavily on constraints and 
restraints, and dampening the refinement is frequently helpful to facilitate convergence.   
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Introduction 
All materials properties (with the exception of radioactivity) are largely governed by the 
distribution of electrons in and between the constituent atoms.  Quantum crystallography is the 
science of extracting quantum mechanically valid information about these electron distributions 
from diffraction experiments [1].  In other words, electron distributions and chemical bonding 
and how these are measured and modelled are the central agendas for quantum 
crystallographers. 
The original definition of quantum crystallography referred only to X-ray diffraction 
experiments.  Whilst X-rays are diffracted by their interaction with the electron density around 
atoms in crystals (see figure 1), electrons are scattered by the crystal potential, which is directly 
related to the electron density by the Mott formula [2] (figure 1).  Therefore, electron diffraction 
experiments are now considered part of the field of quantum crystallography [3, 4] because they 
are another means by which to extract quantum mechanically valid information about atoms 
and bonding in crystals. 

 
Figure 1. Schematic illustration of the interaction of X-rays with the periodic electron density in a crystal and 
electrons with the periodic crystal potential.  The relationship between the Fourier coefficients (structure factors) of 
the electron density and those of the crystal potential is expressed by the Mott formula [2], which is derived from 
Poisson’s equation.  The electron density structure factors are expressed as Fg, while Vg denote the crystal potential 
structure factors.  The reciprocal lattice vectors are given by g, whilst r is a real space position in the unit cell.  The 
subscript j in the Mott formula signifies the jth atom in the unit cell, Bj is the corresponding Debye-Waller factor, Ω is the 
volume of the unit cell, ε0 is the free space permittivity, |e| is the magnitude of the charge of an electron and s = (sinθ)/λ 
(where θ is the scattering angle and λ is the wavelength of the radiation being used).  A single (kinematic) scattering 
approximation for interpreting X-ray diffraction intensities, Ig, makes these observables much simpler to translate into 
measured structure factors that in the case of electron diffraction intensities as the latter require a full dynamical 
scattering treatment because the intensities are complicated functions of not only the structure factors, Vg, but also the 
specimen thickness (H), the electron energy (E0) and the scattering angle, θ, i.e. Ig = f(Vg, H, E0, θ). 
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A holistic view of quantum crystallography does not just involve the ability of diffraction 
experiments to furnish us with quantum mechanically valid descriptions of atoms and electrons 
in crystalline materials.  Our ability to interpret and extract meaningful information from 
diffraction patterns depends on quantum mechanically valid descriptions of the interaction of 
radiation (X-rays, γ-rays or electrons) with matter. In the case of X-ray or γ-ray diffraction 
experiments, the application of the kinematic (single) scattering approximation greatly simplifies 
the analysis of diffracted intensities.  However, the validity of such an approximation depends on 
the nature of the interaction of these radiations with matter and this is in turn based on 
quantum mechanically valid descriptions of these interactions. Electrons, being charged, interact 
with matter between 4 and 5 orders of magnitude more strongly than X-rays and γ-rays.  This 
means that a kinematic approximation is almost never appropriate when interpreting electron 
diffraction patterns.  An accurate treatment of the diffracted intensities in electron diffraction 
patterns therefore requires a full description of dynamical scattering that is based on quantum 
mechanically valid formulations of the interaction of electrons with the crystal potential. 
Continuing with a holistic view of quantum crystallography, the precision and accuracy of 
diffraction experiments is now at a sufficiently high level to allow experimentally measured 
Fourier coefficients of the crystal potential or electron density (structure factors) to test the 
validity and ranges of applicability of solid-state theories, such as density functional theory 
(DFT) for example.  These solid-state theories are themselves the constructs of quantum 
mechanical models and approximations of variable validity. 

Table 1.  A comparison of the characteristics of X-rays / γ-rays with those of electrons relative to quantum 
crystallographically relevant diffraction experiments. 

X-rays / γ-rays Electrons 
•  Massless •  Have mass 
•  Chargeless •  Have charge 
•  Not easily manipulated with optical elements  
   and cannot be energised but can be  
   monochromated 

•  Easily manipulated with electromagnetic optical  
   elements, can be energised (accelerated and  
   decelerated) and monochromated before AND  
   after interaction with the specimen 

•  Typical specimen volumes irradiated ~10-15 m3 •  Typical specimen volumes irradiated ~10-25 m3

•  Spatial selectivity generally >10-8 m •  Spatial selectivity 10-11 – 10-9 m 
•  Interact with the electron density •  Interact with the crystal potential 
•  Kinematic scattering approximation often valid  
   in interpreting data 

•  Full dynamical scattering description must be  
   applied to interpret data 

•  Extinction (due to multiple scattering) and scale  
   (due to the relative nature of the integrated  
   intensities) can detract from the accuracy of  
   structure factor measurements [5 – 8]. 

•  The full dynamical (multiple) scattering analysis  
   makes extinction irrelevant.  The rocking curve  
   intensities within CBED patterns makes  
   structure factor measurements absolute. 

Table 1 gives a comparison of the characteristics of X-rays (and γ-rays) with electrons in the 
context of diffraction experiments that are relevant to quantum crystallography.  The 
fundamental differences between electrons and photons (X-rays and γ-rays) are that electrons 
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have mass and charge.  This makes them easily manipulable with electromagnetic optical 
elements and means that they can be accelerated and decelerated by electric fields.  As a result, 
their wavelengths can be easily tuned and they can be focussed into probes with sub-nanometre 
dimensions even in standard transmission electron microscopes (TEMs).  In TEMs with 
aberration correctors, probe sizes are routinely sub-Ångström.  Electromagnetic deflection of 
incident electron beams with sub-Ångström spatial selectivity, coupled with the ability to image 
materials and the location for a diffraction experiment at atomic resolution means that regions 
of perfect crystal can be selected for diffraction experiments, even in materials with nano-
crystalline phases and high crystalline defect densities. 
In addition to this high level of two-dimensional spatial selectivity, the strong interaction of 
electrons with matter due to their charge means that typical specimen thicknesses for electron 
diffraction experiments are nearly always less than about 200 nm.  Standard probe sizes used in 
quantitative convergent-beam electron diffraction (QCBED) with the aim of measuring structure 
factors of crystal potential are about 1 nm.  The volume of irradiated material is therefore of the 
order of 10-25 m3, i.e. about 10 orders of magnitude smaller than in the case of typical single-
crystal X-ray or γ-ray diffraction experiments.  This is an effective measure of the differences in 
three-dimensional spatial selectivity between photons and electrons when it comes to quantum 
crystallographically relevant diffraction experiments. 
Another point about the selectivity of QCBED is that the diffraction patterns are extremely 
sensitive to the degree of crystal perfection.  The presence of crystal defects is often very strongly 
manifested by breaks in symmetry within the complex and detailed intensity distributions that 
make up convergent-beam electron diffraction (CBED) patterns.  In practice, this means that 
should the experimenter observe breaks in symmetry within the diffraction patterns that they 
are collecting, these should be discarded and a new area of the specimen selected for CBED data 
collection.  This is made simple by the ease with which an operator can switch between imaging 
the specimen in real space and imaging the diffraction pattern (at the push of a button). 
A final point regarding the spatial selectivity of QCBED and the technique’s future potential is 
made by Prof. Paul Midgley [9]: 
“…highly accurate structure factors can be obtained from volumes of material much smaller than 
is possible even with synchrotron x-rays. This powerful combination offers the possibility of 
mapping bonding characteristics across heterogeneous samples (e.g., composites or quantum wells) 
that may not be achievable with any other method.” 
CBED – Some Background 
Due to the strong interaction of electrons with matter, specimen thicknesses do not generally 
exceed about 200 nm (or 2,000 Å), which means that the shape transform of the specimen 
elongates the reciprocal lattice points into reciprocal lattice rods (often referred to as “relrods”) 
in the direction of the specimen surface normal which is also usually in the same direction as the 
incident electron beam.  In addition, the very short wavelengths (λ ≈ 0.02 Å – 0.05 Å) of 
electrons used in TEMs means that the Ewald sphere is almost flat with respect to the reciprocal 
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lattice.  What this means is that the Ewald sphere will intersect many relrods, especially if the 
incident beam is incident along a major zone axis in a crystal.  Because of the proximity of many 
reflections to their respective Bragg conditions under these circumstances, there will be many 
reflections that have measurable and significant intensities in them. 
If one then sets up an electron probe in the form of a convergent beam spanning a convergence 
angle of 2α, then the result is no longer a set of diffracted rays manifesting spots in a diffraction 
pattern but diffracted cones spanning the angle 2α, which manifest discs in the resulting CBED 
pattern.  This is illustrated in figure 2. 

 

Figure 2.  Schematic illustration of CBED and its relationship to parallel beam diffraction.  (a) In parallel beam 
diffraction, the diffraction pattern is an arrangement of spots related by linear combinations of the two shortest non-
colinear reciprocal lattice vectors (scattering vectors) appearing in the pattern, g and h.  (b) If there are two beams 
incident upon the specimen in different directions, the result is two point patterns where the points in each individual 
pattern have the same geometry described by linear combinations of g and h.  The two point-patterns are offset from one 
another by the difference in angle of incidence of the two incident beams.  (c) By extension, the larger the number of 
incident beam directions, the more the diffraction pattern fills up with spots.  (d) Taking this sequence to its extreme, the 
ultimate result is a cone of incident beams that results in diffracted discs where the position of a point in one disc is 
related to the same position in another disc by a scattering vector (reciprocal lattice vector) that is some linear 
combination of g and h.  The cone convergence semi-angle is denoted by α. 

The intensity within a diffracted disc as a function of angle is a 2-dimensional rocking curve and 
CBED patterns with detailed intensity distributions are extremely sensitive to the specimen 
thickness, the structure factors of the reflections whose rocking curves encompass or are close to 
their Bragg conditions and the structure factors of the scattering vectors that strongly couple 
different reflections in the dynamical scattering that dominates a particular diffraction geometry.  
In fact, diffraction geometry plays a large role in tailoring QCBED experiments and data 
collection to the measurement of specific structure factors and is covered in the next lecture – 
QCBED Lecture 2:  Experimental Procedures & Data Preparation. 
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QCBED – Introduction and Fundamentals 
It follows from the previous paragraph that matching a calculated CBED pattern to an 
experimental one is a means for measuring a number of structure factors (those of the 
reflections at or near the Bragg condition plus those corresponding to the scattering vectors that 
strongly couple these reflections in dynamical scattering) and the specimen thickness.  An 
example is given in figure 3, which illustrates the nature of QCBED pattern matching. 
In the example shown for a CBED pattern obtained from corundum (α-Al2O3), five structure 
factors and the crystal thickness are refined as well as phenomenological absorption coefficients 
paired with each of the structure factors, the electron energy and the incident beam intensity.  
This results in 13 refined parameters.  The diffraction pattern has been differentiated with 
respect to scattering angle to remove the diffuse background caused by inelastic scattering 
because the electron scattering calculations used in QCBED consider only elastic scattering 
(accounting for inelastic scattering would increase the length of the refinements by several 
orders of magnitude).  After binning by a factor of 12 x 12 pixels, the number of independent 
data points matched is 4,032, which outnumbers the refined parameters more than 300 times.  
This leads to the very high precision associated with the results shown.  QCBED refinements are 
usually very highly constrained by this rate of oversampling as well as the complexity of the 
rocking curve intensities within each reflection disc and the pattern as a whole. 

 

Figure 3.  Schematic illustration of QCBED.  A CBED pattern is collected using a digital detector and differentiated to 
remove the slowly varying diffuse background due to inelastically scattered electrons.  The reflection discs to be pattern 
matched are extracted into a linear array which is input for the QCBED refinement algorithm.  QCBED pattern matching 
involves the fitting of a computer-simulated CBED pattern to the experimental input by refining the parameters to which 
the intensities in the pattern are most sensitive.  These include the structure factors of the reflections at or near the Bragg 
condition, the structure factors of the scattering vectors that couple these reflections in the highly dynamical scattering 
that occurs between them, and the specimen thickness.  The matching process is heavily over-determined, as shown in 
the present example, leading to very high precision and accuracy of the measured structure factors.  This example uses 
CBED data collected with 200 keV electrons at an incident beam orientation of 104 relative to [-441] in α-Al2O3 [10]. 

Conversion of structure factors from crystal potential to electron density via the Mott formula 
[2] further increases precision if s = (sinθ)/λ) is small (as in the case of the low order structure 
factors sensitive to bonding) because s2 multiplies the crystal potential structure factors, Vg, and 
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therefore any uncertainty associated with them, in the process of determining Fg, the structure 
factors of the electron density (figure 1). 
The accuracy of QCBED in measuring low order structure factors is further enhanced by the 
form of the atomic scattering factors for electrons, which increase very rapidly with decreasing s 
– more so than X-ray scattering factors as can be seen from the example of aluminium in figure 
4.  On the other hand, X-ray diffraction covers a much broader range of s in measuring structure 
factors and those of higher order (higher scattering angle) are much more reliably measured with 
X-rays than by QCBED.  This is due to the difficulty of collecting CBED rocking curves spanning 
Bragg conditions for higher order reflections with sufficient two-dimensional detail to constrain 
QCBED refinements, as well as the lower sensitivity of electron scattering to core electron 
distributions as shown by the scattering factor plot in figure 4. 

 

Figure 4.  A comparison of electron and X-ray scattering factors (left) and a combination method for merging X-
ray and QCBED-measured structure factor sets (right).  If one considers the scattering factors for X-rays and 
electrons where the areas under both curves have been normalized with respect to one another, then it is evident that 
electrons are much more sensitive to the crystal potential than X-rays are to the electron density at low scattering angles 
(s = (sinθ)/λ).  This region corresponds to the low-order, bonding-sensitive structure factors (shaded in blue).  The 
region of s in which the two scattering factor curves cross over (at the vertical dotted line) is shaded in purple and beyond 
this (shaded in red), as s increases, X-rays become more sensitive.  The present example shows the case for aluminium 
atoms and hkl corresponding to fcc elemental aluminium.  The scattering factor curves correspond to the relativistic 
Hartree-Fock calculations of Doyle and Turner [11].  QCBED is known to be more accurate and precise when it comes to 
measuring low order structure factors [12 – 14], whilst X-ray diffraction is more accurate and precise when it comes to 
measuring the higher order structure factors.  With this in mind and given that QCBED measurements are extinction-
free and absolute (no scale factor is involved), the QCBED-measured structure factors can be used in combination with 
sets of structure factors measured by X-ray diffraction via a combination method such as the approach shown on the 
right of the figure (developed with and largely by Dr. V. Streltsov [15]).  Such an approach produces a combined 
structure factor set that is much more useful than its individual components (QCBED and X-ray diffraction) in isolation. 

So, in summary, QCBED is very effective at measuring a small number (a few tens) of low to 
medium order structure factors with high accuracy and precision whilst X-ray diffraction can 
measure many more structure factors (thousands) covering a wide range of s from low to high 
order of hkl.  The lower order and strong structure factors measured by X-ray diffraction are 
highly susceptible to extinction (a consequence of multiple scattering) [5 – 8] and the scale of the 
X-ray diffraction measured structure factors must be determined using an external calibrant 
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(often just the independent atom model values for higher order structure factors) [8].  The 
availability of absolute and extinction-free structure factors from QCBED thus presents an 
opportunity to merge them with any set of X-ray diffraction-measured structure factors for the 
same material.  A combination method for merging QCBED and X-ray diffraction structure 
factors sets, developed by Dr. V. Streltsov [15] in conjunction with this author, is shown in figure 
4.  This approach takes advantage of the large range and number of structure factors that can be 
measured relatively quickly with X-ray diffraction experiments by merging them with QCBED-
measured structure factors that have a much smaller range, take significantly longer to 
determine, but can be used to determine the scale of the X-ray structure factors and correct 
them for extinction. 
Considering how the diffracted intensities in computer-simulated CBED patterns are calculated, 
is instructive with respect to considering how QCBED could be adapted to future quantum 
crystallography applications.  Two completely different formalisms exist for a complete 
description of dynamical scattering of electrons: (i) the Bloch-wave method [16, 17] and (ii) the 
multislice [18] formulation.  The fundamental components of both are illustrated in figure 5 with 
details in the caption. 

 
Figure 5.  Two independent formalisms for calculating dynamical electron scattering – the Bloch-wave [16, 17] 
and multislice formalisms [18].  The Bloch-wave method formulates dynamical scattering as a set of N simultaneous 
equations where N is the number of reflections that are chosen for inclusion in the scattering equations.  These are 
reflections within a user-specifiable range of the Bragg condition and in the illustration above, these appear as reflections 
with significant intensities in a diffraction pattern that includes higher angle reflections.  Diagonalization of the 
scattering matrix results in the solution of the simultaneous dynamical scattering equations and yields the intensities in 
all reflections included in the calculation.  The solution process in this case is thickness independent and specimen 
thickness is introduced after the solution of the scattering equations as an independent variable.  In contrast, the 
multislice formalism slices the material into layers of crystal potential that are periodic in the plane of the slices which 
are perpendicular to the incident beam direction (there is no requirement for periodicity in the beam direction).  The 
projected potential within each slice determines a phase grating which modifies the electron wave.  The resolution with 
which this projected potential (and therefore the phase grating) is computed determines the number of structure factors 
(and scattering vectors) included in the simulation of diffracted intensities.  The electron wave is Fresnel-propagated 
between slices and the entire calculation is a series of convolutions of scattering and Fresnel propagation until the exit 
face of the specimen has been reached.  The specimen thickness and slice thicknesses determine the total number of 
slices and thus, the number of scattering and propagation convolutions that are applied in a calculation.  As a result, 
these types of calculations cannot treat the thickness as a separate variable as it is a fundamental component of the 
calculation process. 
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It is worth remembering that whilst QCBED matches only a few reflections (see figure 3 for an 
example), there are many others that contain significant intensity (see figure 5) that must be 
modelled correctly because of their collective effects on the reflections being pattern matched.  
In the Bloch-wave formalism, these reflections must be identified individually, usually by way of 
a reflection selection algorithm with user-specified selection criteria.  In the multislice method, 
the number and indices of reflections are set by the slice sampling resolution. 
The two different approaches to calculating CBED patterns leads to different requirements, 
structural constraints, computational expenses and modes of applicability when it comes to 
QCBED.  These are summarized in table 2. 
Something that stands out from table 2 is the difference in the rate of change of the computation 
time as a function of the number of reflections included in each type of calculation.  The 
multislice method is also linearly dependent on the number of slices used in the calculation (the 
thicker the probed region of the specimen and the thinner the slices used, the more convolutions 
are required), but changes at a much slower rate in terms of the number of reflections included 
than the Bloch-wave approach.  It is, however, worth realizing that for small molecule 
crystallography and fully converged calculations of intensities by both methods, the calculation 
times are roughly the same.  A typical QCBED refinement like that in the example of figure 3 
would take about 24 to 48 hours incorporating 256 reflections into both the Bloch-wave and 
multislice methods for a specimen thickness of approximately 1,500 Å.  It is only when unit cells 
become larger and the atomic motifs more complex that the multislice method will start to 
become more efficient than the Bloch-wave approach. 

Table 2. A comparison of the Bloch-wave and multislice formalisms in their application to QCBED. 

QCBED with Bloch-waves QCBED with multislice 
•  Specimen thickness is extrinsic to the solution of the 
scattering equations. 

•  Specimen thickness is intrinsic to the electron scattering 
calculation. 

•  The probed volume of the specimen must have 3-
dimensional periodicity (the stacked Bloch-wave approach 
[19] is a way of breaking down this requirement but has 
limitations). 

•  The probed volume of the specimen need only  have 2-
dimensional periodicity in the plane of  each slice, making 
it possible to refine atomic structure and structure 
factors in layered nanocomposites. 

•  Reflection selection for solving the scattering equations 
is on an individual basis and completely user-specifiable. 

•  Reflection selection is collective and dependent on the 
slice sampling resolution 

•  Easy to compute diffraction patterns for any orientation 
of the incident electron beam. 

•  The slicing direction limits the range of orientations for 
which diffraction patterns can be calculated. 

•  The calculation of diffracted intensities is based on the 
diagonalization of an N x N matrix where N is the number 
of reflections chosen for inclusion in the calculation. 

•  The calculation of diffracted intensities is based  on a 
series of fast Fourier transforms (FFTs). The number of 
reflections is N = 2p x 2r, where  p and r are integers and 2p 
and 2r are dimensions of the mesh used for sampling the 
crystal potential in each slice. 

•  Computation times are proportional to N3. •  Computation times are proportional to N.log(N).H/ΔH, 
where H is the specimen thickness and ΔH is the mean 
thickness of each slice (note that the slices do not need to 
have the same thicknesses) 



105Erice International School of Crystallography • 52nd Course, 1-10 June 2018

QCBED Development and Quantum Crystallography 
A final point is the adaptability of QCBED to new directions in quantum crystallography.  Figure 
6 illustrates two different semantics for the refinement of electron distribution (or crystal 
potential) that are fully commutative in QCBED (and indeed in X-ray diffraction analyses).  The 
first shows the way in which QCBED has always been performed, that is:  starting with an initial 
set of structure factors, usually from an independent atom model (IAM) or possibly even a solid-
state theory that includes bonding effects like density functional theory (DFT), which are then 
refined until the best fit between the calculated and experimental CBED intensities is reached.  
The refined structure factors are then used to compute the 3-dimensional crystal potential or 
electron density. 

 

Figure 6.  Two philosophies for QCBED.  (a) All QCBED is currently practiced in this form, where structure factors are 
refined from starting values (usually obtained from an IAM) to optimized values by minimizing the mismatch between 
the calculated and experimental CBED intensity distributions.  The variable parameters are the structure factors and the 
refined structure is the consequence of the refinement of the structure factors.  This process is carried out in reciprocal 
space with the outcome in real space only being considered AFTER the refinement process.  (b) A conceptually different 
approach would be to base the refinement in real space by changing the electron distribution and even atomic positions 
(both being real space parameters).  The refinement of structure factors then becomes a consequence of the real space 
structure refinement.  Whilst the equivalence of (a) and (b) is obvious the differences that result from their practical 
implementation from a computational and materials modelling perspective open up new possibilities. 

An alternative to this is shown in figure 6(b), where the object of the refinement is the 3-
dimensional crystal potential or electron distribution rather than the structure factors 
themselves.  Here the by-products of the refinement are the structure factors.  This has many 
ramifications including the ability to use other methods for generating potential or electron 
distributions like multipoles, DFT and other structural models as “plug-ins”.  This would then 
allow parameters that control these “plug-ins” to be refined instead.  A single parameter in any 
one of these structural models may affect a large number of structure factors simultaneously but 
instead of having many extra refinement parameters corresponding to each affected structure 
factor, there would be just one or two model parameters models as refinement variables.  This 
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would provide an efficient means of directing solid state theory using experimental data, as some 
have already doing for quite some time in X-ray diffraction [20]. 

These notes are supplementary to the lecture content. 
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The purpose of these notes is to provide a concise description of the role of translational symmetry 
in dealing with extended systems. This reflects on the way a model system (i.e. a periodic 
structure) can be constructed and more importantly on how its electronic structure (i.e. crystalline 
orbitals) is affected. In doing that we will refer to crystalline orbitals as a linear combination of 
Bloch functions expressed in terms of atomic orbitals (i.e. atom-centred Gaussian-type functions). 
These notes are meant to serve as a basic introduction. All topics are covered in more detail in the 
references given at the end, in particular see ref. [1] and [2].  

Introduction 
Extended systems exhibit a very large and complex structure in which phenomena are not 
localized but depend on the whole structure. In many cases, they have been considered as 
synonymous of solids, low-dimensionality systems and nanostructures. Here we will consider 
spatially extended systems in that they are extended in some way throughout space.  
Among them, periodic systems are a special class of extended systems in which translational 
symmetry plays a crucial role. In fact, they can be considered as translationally invariant 
extended systems. It turns out that the system under study is an infinite and perfect object that 
can be periodic in 1-, 2- and 3-directions (See Figure 1). 

 

Figure 1. Example of periodic systems of different dimensionality with translational invariance in 3-, 2- and 1-directions. 
Translation vectors are indicated as  i. 

How can periodic systems be modelled? Can we adopt the same theoretical methods (e.g. ab 
initio) as for molecules? Do we need special tricks? 
Translation invariance has a series of interesting properties with important consequences on 
simplification of the problem and the implementation of efficient algorithms [1,2]. 
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Periodic model systems 
When modelling a material, usually in the solid state, it is not always possible to treat it as it is 
(as a whole) because of its large size (e.g. zeolites, MOFs) or its complex structure (e.g. 
amorphous solids, low-dimensionality systems, nanostructures). Therefore, in many cases, the 
real system must be mimicked through a model system. To do that, one has to consider that 
solids can show different combinations of structure topology and chemical bonding. For 
instance, the structure of crystalline materials can be dense, porous (e.g. nano/micro/meso) or 
layered with chemical bonding ranging from ionic to covalent (with intermediate semi-ionic or 
semi-covalent character) and from metallic to molecular. 3D structures become even more 
complicate when dealing with disordered materials, amorphous solids or defective systems. 
Furthermore, the realm of nanoworld has recently attracted a lot of interest in materials science. 
In that case, nanostructures such as nanorods, nanowires and nanotubes have become more and 
more investigated. 
Within a periodic approach, the real system is then modelled as a periodic model system in which 
a repeat unit (hereafter denoted as unit cell) is replicated along periodic (infinite) directions. 
Periodicity can then be exploited in one- (1D), two- (2D) and three- (3D) directions. For 1D and 
2D, the system remains of finite size along the other directions. Accordingly, periodic model 
systems can be regarded as: 
• 3D model. This is the natural choice for inherently crystalline materials. However, solids are 

never perfect like in defective systems (both extended and local defects) and disordered 
(amorphous) solids. In such cases translational symmetry is apparently lost. Nevertheless, the 
periodic approach can be recovered through the use of a supercell model [2,3] in which the 
replicated unit cell is large enough to include the imperfection (e.g. local defect, disorder, …). 
The size and shape of the supercell depend on the examined systems. For point defects, 
defect-defect interactions should be avoided among periodic replicas. In 
disordered/amorphous systems, the supercell must be large enough to guarantee only short-
range order and amorphization of the structure. The supercell model can also be adopted to 
study heterostructures. 

• 2D model. An ideal crystal is an infinite object while a real crystal is limited by different 
surfaces. Surfaces are important in many chemical and physical phenomena as catalysis, 
adsorption, corrosion and oxidation. Yet, surfaces show a rich “chemical complexity” because 
they can be internal (e.g. porous materials) and external (e.g. surfaces of metals and oxides 
grains). In addition, steps, kinks, and defects can also be present. In this case, the periodic 
approach is exploited by using the so-called slab model [2-4]. A thin film is cut from the solid, 
comprised by a few atomic layers, parallel to a given (hkl) face. The structure remains 
periodic along two directions and finite in the perpendicular one. Surface properties should 
converge with the slab thickness. Note that not all crystalline surfaces are physically stable or 
worthy of investigation. 
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• 1D model. A periodic approach can be easily employed to model polymers with regular or 
helicoidal structure. In the realm of nanostructures, nanowires and nanotubes can be 
modelled as one-dimensional structures. For instance, a nanorod can be created by cutting a 
2D model parallel to another (h’k’l’) face [5] or a nanotube can be generated by wrapping an 
initial 2D model according to a rolling vector [6]. The latter defines the diameter and chirality 
of the tube. 

• 0D model. This can be considered the limit case of a periodic approach in which translational 
symmetry is completely lost, but point symmetry still remains. In materials modelling this is 
known as a cluster model. It can be used to model nanoparticles [5].   

In the next section, we will discuss in more detail how translational symmetry can be exploited 
in a 3D model [2,8]. Results will be completely general and can be extended to lower 
dimensionality models by removing translational symmetry along one or two directions. It is 
assumed that basic knowledge of Crystallography is known. 

Direct and reciprocal lattices 
A 3D structure is a natural model of a crystalline system. It can then be described as an ordered 
arrangement of atoms or molecules in three dimensions []. The set of points at which atoms (or 
molecules) are repeated throughout space by translational symmetry forms the direct lattice. By 
definition, a lattice is translationally invariant. Points are repeated at intervals of length a1, a2 and 
a3 along three non-coplanar directions. The three constants a1, a2 and a3 are called lattice 
parameters, and the vectors a1, a2 and a3, oriented in the same three non-coplanar directions 
with the lattice parameters are the basis vectors. Basis vectors a1, a2 and a3 define the unit cell. 
Lattice parameters and angles between the basis vectors are called cell parameters. 
A general lattice vector can always be expressed as a linear combination of the basis vectors: 

g = n1a1 + n2a2 + n3a3

where coefficients ni are integers. 
Note that translations along lattice vectors are symmetry operations. 
The unit cell corresponds to a volume in space that fills space entirely when translated by all 
lattice vectors. The choice of the unit cell is not unique. A set of parallelepipeds defined by the 
basis vectors a1, a2 and a3, with the a1, a2, a3 as much orthogonal as possible and the cell as 
symmetric as possible can be classified in 14 types denoted Bravais lattices. A unit cell containing 
only one lattice point is called primitive cell. 
The position r of an atom in the unit cell is usually expressed in terms of fractional coordinates 
f1, f2, f3 such that 

r = f1a1 + f2a2 + f3a3

f1, f2 and f3 values are in the interval 0 to 1. 
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In the interpretation of many physical properties of crystals (e.g. diffraction, electronic structure, 
phonons…) it is very useful to introduce the so-called reciprocal lattice. Any direct lattice can be 
associated to a new lattice defined through reciprocal lattice basis vectors b1, b2, b3 as: 

ai · bj = 2  ij

This is an orthogonality condition in which  ij is the Kronecker delta.  
Equivalently: 

b1 = 2  / V a2 x a3  ;  b2 = 2  / V a3 x a1  ;  b3 = 2  / V a1 x a2

where V = a1 · a2 x a3 and V* = (2 )3 / V are the volumes of the unit cell in the direct and 
reciprocal space, respectively. 
Any reciprocal lattice vector can be expressed as a linear combination of the basis vectors with 
integer coefficients (mi) such as 

K = m1b1 + m2b2 + m3b3

A general position in the reciprocal lattice is a linear combination of basis vectors with real 
coefficients: 

k = k1b1 + k2b2 + k3b3

A useful way to define a primitive unit cell in the reciprocal space is through the Dirichlet 
construction. By connecting one reciprocal lattice point to all its nearest neighbors and letting 
orthogonal planes pass through their midpoints, a region of space which is closer to one lattice 
point than to anyone else is delimited. This corresponds to the Wigner-Seitz cell in the 
reciprocal space, which is also known as the first Brillouin Zone. There are 14 different types of 
first Brillouin Zones corresponding to the 14 reciprocal Bravais lattices. See ref. [7] for more 
details. 

Bloch’s theorem, Bloch functions and crystalline orbitals 
When solving the Schrödinger equation for a 3D periodic model system, one can think to treat it 
as a huge molecule [2,8]. It is not unexpected, by intuition, that the calculation of the electronic 
structure and related properties rapidly becomes an unattainable problem.  
In fact, in order to calculate molecular structures and properties, it is necessary to determine the 
eigenfunctions Ψ and eigenvalues E of the Schrödinger equation 

HΨ= EΨ 

where H is the electronic Hamiltonian. For systems of interest in chemistry, one normally resorts 
to the variational approach. The most common way to implement this approach is to express the 
wave function in terms of one-electron spin-orbitals {φ} (molecular orbitals, MO) that in turn are 
written as a linear combination (LC) of known basis functions {χj}, usually denoted as basis set: 
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φ(r) =Σj cj χj(r) 

When the basis set is built with atomic orbitals (AO), this corresponds to the well-known MO-
LCAO approximation.  
One-electron spin-orbitals are then combined in an anti-symmetrized wave function known as 
Slater determinant, which is commonly adopted in the frame of the Hartree-Fock method and in 
the Kohn-Sham formalism of the Density Functional Theory (see Giannozzi’s notes). 
When the basis functions are orthonormal, this leads to the solution of an eigenvalue problem 
that can be written in matrix notation as  

HC=CE 

Where H is the Hamiltonian matrix in terms of the basis functions, C is the matrix of the 
coefficients and E is the eigenvalue matrix. The size of the matrices depends on the number of 
basis functions. It is then evident now that if an extended system is treated as a huge molecule, 
one has to deal with infinitely sized matrices. Fortunately, the exploitation of translation 
symmetry in periodic model systems makes this computational problem solvable. 

Bloch’s theorem and Bloch functions 
Let us consider a Hamiltonian operator: H = T + V(r), which contains a periodic potential, such 
that 

V(r) = V(r+g),   

For any g then the wavefunction exhibits the following translational symmetry: 

Φ(r+g) = eik·g Φ(r),  

This is the main consequence of the Bloch’s theorem. Thus, the wave function at translationally 
equivalent points of the direct lattice corresponds to the initial wave function at r times a phase 
factor eik·g known as the Bloch phase factor in which k is a wave vector. 

If k' = k + K, where K is a reciprocal lattice vector, the Bloch phase factor becomes 

eik'·g = eik·g eiK·g = eik·g

in which it has been used that eiK·g = e2πi mj
 
nj = 1 for the orthonormality condition between 

reciprocal and direct lattice vectors. This means that k can be limited to the first Brillouin zone. 
Each function that satisfies the Bloch theorem is an eigenfunction of the lattice translation 
operators and is called Bloch Function. 
Alternatively, by using group theory, it can be shown that eik·g is the eigenvalue of the translation 
operator T which commutes with the Hamiltonian H: T H=H T (because of the crystal 
symmetry) and shares the same eigenfunctions: 
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  T Φ(r) = Φ(r+g) = eik·g Φ(r) 
Each eigenfunction of H can then be labelled with k indicating the irreducible representation of 
the translation group: Φk(r) (or equivalently Φ(k;r))  

Periodic boundary conditions (Born-von Karman)  
The real crystal is macroscopic but finite. It can be viewed as a parallelepiped containing N = N1 
x N2 x N3 unit cells with sides Ni ai (i=1,3). 
When Ni grows to infinity, the ratio of the number of atoms at the surface to the total number of 
atoms in the crystal goes to zero. It turns out that a macroscopic crystal mostly exhibits 
properties and features of the bulk material, so that bulk properties should be insensitive to the 
surface and to the boundary conditions imposed on the wave function.  
To assure periodicity the Born-von Karman periodic boundary conditions can be adopted: 

Φk(r+Njaj) = Φk(r)  

as if the crystal was a three-dimensional infinite array of identical and contiguous finite crystals. 
The dependence of each Φ from k has been highlighted. 
By applying the Bloch theorem one gets: 

Φk(r+Njaj) = ei Nj
 
k·aj Φk(r) = Φk(r)  

which implies that the phase factor is equal to one: ei Nj
 
k·aj = 1.  

But if 

ei Nj
 
k·aj = ei Nj

 
kj bj·aj = e2πi Nj

 
kj = 1  

this equality is fulfilled by constraining kj (real coefficients) to be 

kj = nj / Nj  

with nj being an integer. 

There exist then N1 x N2 x N3 k points in every reciprocal lattice cell, each of which can be 
written by the reciprocal lattice basis vectors as 

k =
n1

N1

b1 +
n2

N2

b2 +
n3

N3

b3
 

If nj is such that 0 ≤ nj ≤ Nj for every j k belongs to the origin cell of the reciprocal lattice. When 
Nj tends to infinity, k points are very close one another and at the limit they completely fill the 
space. It turns out that k can be considered as a continuous variable. 
Since k points can be limited to the first Brillouin Zone, as shown above, the sum over k-points 
can then be transformed into integrals over the first Brillouin Zone. 
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Notably, the use of Bloch functions allows us to take advantage of their properties to simplify the 
solution of the Schrödinger equation for a periodic model system. In fact, by referring to a basis 
set of nBF Bloch functions, the Hamiltonian matrix (H) becomes block-diagonal (see Figure 2), 
with each block referring to one particular point k in the reciprocal space. The solution of the 
Schrödinger equation for a periodic system (of infinite size) is then transformed into an infinite 
set of eigenvalue equations of finite size (i.e. nBF x nBF). 

 

Figure 2. Factorization of the Hamiltonian matrix in a block-diagonal form when using Bloch functions. 

Apparently, this is not a great advantage but owing to the usually smooth change of the 
eigenvalues and the eigenvectors with k, it is generally possible to sample matrix H at a finite 
number of points. 
Therefore, the Schrödinger equation in a periodic approach is solved at different points in the 
first Brillouin zone: 

HΨn(k;r)=En(k)Ψn(k;r) 

The eigenfunctions of the equation above are the crystalline orbitals (CO). Eigenvalues En(k) are 
characterized by two indices: k and n. As discussed above, k represents a point in the reciprocal 
space belonging to the first Brillouin zone. Since k is a continuous variable there is a band of 
eigenvalues tagged by the band index n. This leads to a spectral distribution of the electronic 
levels that represents the electronic band structure of the crystal. As an example, the band 
structure of silicon (semiconductor) and beryllium (metal) are shown in Figure 3.  

 

Figure 3. Band structure of silicon and beryllium. The Fermi energy (EF) is highlighted in red. 
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Band structure of solids can be interpreted by using the language of band theory: energy gaps, 
band width, valence bands, conduction bands, Fermi energy, Fermi surface… and related 
quantities like the density of states (DOS). However, this is not in the scope of the present notes, 
see for instance ref. [9] 

Localized basis functions 
Crystalline orbitals are then linear combination of Bloch functions: 

Ψn(k;r) = Σj cj,n(k) Φj(k;r) 

They are usually expressed in terms of either plane waves or localized atomic orbitals. Hereafter 
we refer to localized atom-centred functions 

Φj(k; r) = N-½ Σg eik·gHj(r - rj - g) 

in that atomic orbitals (AOs) are centred at the position rj located in the cell corresponding to 
the direct lattice vector g. Usually, rj corresponds to the atomic positions in the unit cell. It can 
be easily showed that Φj(k; r) satisfies the Bloch’s theorem. AOs are commonly linear 
combinations of the products of Gaussian-type functions by real, solid harmonics [1,2]. In 
analogy with the well-known MO-LCAO, here we refer to it as the CO-LCAO approximation. 
Coefficients cj,n(k) are obtained within a variational approach by solving a matrix equation at 
different k-points: 

H(k)C(k)=S(k)C(k)E(k) 

where S(k) is the overlap matrix between Bloch functions, C(k) is the matrix of the coefficients, 
E(k) is the eigenvalue matrix, H(k) is the Fock/Kohn-Sham matrix in the reciprocal space. With 
the orthonormality condition at every k point: C(k)†S(k)C(k)=I. 
The first Brillouin zone can be sampled on a finite set of k-points. The number of k points to be 
considered is usually relatively small and solving the Schrödinger equation in the reciprocal 
space is a feasible method.  
H(k) is obtained as the Fourier transform of the Fock/Kohn-Sham matrix in the direct space 
H(g). In terms of a localized basis set, the element of the Hamiltonian matrix in the direct space 
is computed as 

Hij(g) = <χi(r – ri – g’)|H|χj(r - rj – g”)>  

where the direct lattice vector g’ and g” label the cells where the i-th and j-th Aos are centered. 
Because of translation invariance of the integrals in the local basis, χi can be referred to the 0-
cell, so that 

Hij(g) = <χi(r – ri )|H|χj(r - rj – g)> 
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where g=g”-g’ is a generic direct lattice vector. 
The generic element of the Fock/Kohn-Sham matrix represented in the reciprocal space is: 

Hij(k) = <Φi(k; r)|H|Φj(k; r)> = 1/N Σg’ Σg eik·(g-g’) <χi(r – ri – g’)|H|χj(r - rj – g”)> 

  
Hij(k) =’ Σg eik·g <χi(r – ri )|H|χj(r - rj – g)> = Σg eik·g Hij(g) 

The use of a localized basis set allows one: 
(i) to efficiently evaluate the Fock/Kohn-Sham matrix in the direct space by means of standard 
molecular techniques and to fully exploit the point and translation symmetry of the crystal;  
(ii) in a periodic approach, 2D (slabs), 1D (polymers) and 0D (molecules) model systems can be 
consistently treated by exploiting the translational symmetry along two-, one- and zero-
directions, thus avoiding artificial 3D periodic reproduction of the model system,  
(iii) a “chemical” interpretation of bonds as commonly carried out for molecules. 
As stated before, results for 3D periodic structures are completely general and can be extended 
to lower dimensionality models by simply removing translational symmetry along one or two 
directions. 
For further details and examples the reader is advised to refer to the review by Dovesi et al. [2]. 
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Quantum-mechanical simulations aim at solving the Schrödinger equation of the system. In most cases, the
static (time-independent) equation is considered for the ground-state of the system:

HΨ = EΨ

where H is the Hamiltonian operator (often approximated with the so-called “electrostatic, non-relativistic”
Hamiltonian). The many-body electron-electron repulsion term of the Hamiltonian requires special care
and is often described by means of a mean-field Hartree-Fock (HF) scheme (where each electron feels
the average field of all the others) or a density functional theory (DFT) approach or a combination of the
two (hybrid DFT). Another common approximation in condensed matter simulations consists in using a
single-determinant to represent the ground state wave-function Ψ.

The Born-Oppenheimer approximation (BOA) is also adopted according to which, due to their differ-
ent velocity, the motion of electrons can be decoupled from the motion of nuclei. At each fixed nuclear
configuration R, the electronic Schrödinger equation is solved:

H(R)Ψ(R) = E(R)Ψ(R) (1)

which provides the electronic energy E(R) and the ground state wave-function Ψ(R) of the considered
nuclear configuration. The BOA basically assumes that electrons would instantaneously rearrange to a
change in nuclear configuration.

In these notes, we do not discuss how the equation (1) is solved in a solid state context (in this respect,
see lecture notes by B. Civalleri and P. Giannozzi). Here, we just assume that we know how to solve
that equation for each nuclear configuration R and we provide an overview (far from being complete)
of what properties of materials can be computed from there. First of all, we may define two groups of
properties: those obtained from the analysis of the energy E(R) and those obtained from the analysis of the
wave-function Ψ(R). In particular, we will give more details about the first group because the properties
belonging to the second group will also be covered by many other lecture notes.

Energy-related Properties

Many properties can be extracted from the analysis of the energy itself while many others from the study
of its derivatives with respect to different kinds of perturbations. Here, we consider three types of perturba-
tions: atomic displacements u, lattice parameters a and electric field components E . A systematic formal
account on the properties that can be obtained from energy derivatives with respect to these perturbations
can be found in the references below up to second- and third-order, respectively:

1) X. Wu, D. Vanderbilt and D.R. Hamann, Phys. Rev. B, 72, 035105 (2005)

2) M. Veithen, X. Gonze and P. Ghosez, Phys. Rev. B, 71, 125107 (2005)

1
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The Potential Energy (Hyper)Surface

However, before discussing its derivatives, let us analyze the energy E(R) as such. In order to do that, it
proves convenient to introduce the fundamental concept of a potential energy (hyper)surface (PES), which
basically describes the energy of the system as a function of its nuclear configuration:

E = f(v1, v2, · · · , vM )

The PES is a (hyper)surface in a M -dimensional space where v1, v2, · · · , vM are the variables used to define
the structure of the system (atomic positions and lattice parameters for a solid). Different sets of coordinates
can be used (Cartesian, internal, etc.) so that there is no upper bound for M (redundant coordinates can
be used). However there is a lower bound for M (i.e. minimum number of variables needed to define the
structure). For a molecule it is:

M = 3N − 3− 3(2)

where N is the number of atoms and where the translational and rotational degrees of freedom are removed.
For a 3D solid it is:

M = 3N − 3 + (9− 3)

where now N is the number of atoms per cell and the +9 refers to the number of variables needed to define
the lattice cell.

Figure 1: Schematic representation of the potential energy (hyper)surface and of its critical points.

Some critical points of the PES embody relevant chemical information. In particular, minima of the PES
correspond to equilibrium chemical structures while first-order saddle points to transition state structures.
All critical points are characterized by a vanishing gradient vector g:

g =

(
∂E

∂v1
,
∂E

∂v2
, · · · , ∂E

∂vM

)

Critical points can be minima, maxima or saddle points depending on the sign of the eigenvalues of the
Hessian matrix of second energy derivatives:

H → Hij =
∂2E

∂vi∂vj
HU = ΛU

Once diagonalized, the Hessian matrix provides M eigenvalues λi: if they are all positive then the critical
point is a minimum; if they are all negative it is a maximum; if they are all positive but n negative then it is
a n-th order saddle point.

2
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Geometry Optimization

The process of finding minima (or saddle points) of the PES (i.e. geometry optimization) is crucial for the
study of many advanced properties of a system. Several schemes can be devised of increasing complexity,
cost and efficiency depending on the “ingredients” used in the minimization process (energy, forces, Hes-
sian). In particular, the evaluation of the Hessian is much more expensive than that of the forces, which in
turn is more expensive than that of the energy:

E < g � H

Energy-based methods (line optimization, etc.) are simple, cheap, widely applicable but typically show
very slow convergence. Gradient-based methods (conjugate gradient, quasi-Newton, etc.) are more expen-
sive but show good convergence. Second derivative methods (Newton, Newton-Raphson, etc.) are very
expensive but also very fast. Most solid state packages implement gradient-based algorithms for geometry
optimization based on the analytical evaluation of the forces.

Let us discuss into some detail the Newton (and quasi-Newton) scheme. In this case, the PES is approxi-
mated as a quadratic function (Taylor expansion centered around an initial configuration 0 and truncated to
second-order):

E(v) = E0 + g�
0 ∆v +

1

2
∆v�H∆v

where ∆v = v − v0 is the difference between current and starting configurations. The gradient vector at
the current configuration v can thus be written as:

g(v) = g0 +H∆v

Given that we look for a minimum, we can impose the following condition:

g(v) = g0 +H∆v = 0

which leads to:
∆v = −H−1g0

This is known as Newton’s step and tells us how the geometry needs to be changed to pass from an initial
configuration to a minimum, provided that the PES is quadratic and that both the forces and Hessian of
the initial configuration are known. In this case, a single optimization step would take us to the minimum.
However, the PES is never exactly quadratic; furthermore, the numerical evaluation of the Hessian would
be very expensive so that in quasi-Newton approaches the Hessian is never explicitly computed but rather
estimated from the evolution of the forces along the optimization process (for instance with the Broyden-
Fletcher-Goldfarb-Shanno, BFGS, approach).

Pressure

The effect of pressure can be included on computed thermodynamic, structural and mechanical properties
by performing constrained geometry optimizations:

• Pressure-constrained optimizations - An external pressure is applied in the form of a hydrostatic pre-
stress and the lattice parameters (and atomic positions) optimized under this constraint. In this case,
the quantity being minimized during the optimization process is the enthalpy H = E + PV of the
system. The optimization provides the equilibrium volume (and structure) at the desired pressure;

3



120 Erice International School of Crystallography • 52nd Course, 1-10 June 2018

• Volume-constrained optimizations - Several constant-volume optimizations are performed at different
volumes so that an energy-volume curve is obtained and fitted to an equation-of-state. The pressure-
volume relation P (V ) and the value of the bulk modulus K of the system (i.e. average elastic re-
sponse of the system) are then obtained from the following equations:

P (V ) = −
(
∂E

∂V

)
and K(V ) = V

(
∂2E

∂V 2

)

Figure 2: Schematic representation of the equation-of-state approach to the determination of the P (V ) relation.

Harmonic Frequencies

Atoms in a lattice are never at rest in their equilibrium positions but they rather vibrate because of ther-
mal nuclear motion (also at 0 K they vibrate because of zero-point motion). The lattice dynamics can
be described at the harmonic level (i.e. with a quadratic description of the PES with respect to atomic
displacements). In this case, the nuclear motion is described in terms of 3N − 3 independent quantum har-
monic oscillators. A detailed description of lattice vibrations is crucial to the understanding of infrared (IR)
and Raman spectroscopies, thermodynamics, thermal properties, transport properties, phase-transitions,
nuclear-relaxation, etc. Harmonic vibration frequencies ωi are obtained from the diagonalization of the
mass-weighted Hessian matrix of second energy derivatives with respect to pairs of atomic displacements
(ωi =

√
λi):

W → Wij =
Hij√
MiMj

where Hij =
∂2E

∂ui∂uj
then WU = ΛU

where i and j represent Cartesian atomic displacements. The U eigenvector matrix contains the normal
modes of vibration. The Hessian matrix H is often computed numerically from finite differences of analyt-
ical gradients in solid state packages.

If only relative motions of atoms within the same cell are considered and translational invariance retained,
then in-phase (Γ-point) atomic motions are described that can be probed by IR and Raman spectroscopies:

WΓ → WΓ
ij =

H0
ij√

MiMj

H0
ij =

∂2E

∂ui0∂uj0

where bold symbols label lattice vectors. Harmonic frequencies provide the positions of IR and Raman
peaks. Also the intensity of the peaks can be computed from energy derivatives. In particular, the IR
intensity (i.e. variation of the dipole moment along the normal mode) can be obtained from the second-rank
Born charge tensor Z∗ of mixed second energy derivatives:

I IR = I IR(Z∗) where Z∗
ij =

∂2E

∂Ei∂uj

4
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The Born tensors can be computed in many different ways: in terms of localized crystalline orbitals (Wan-
nier functions), from the Berry phase, from coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) cal-
culations, from the density functional perturbation theory (DFPT), etc. The Raman intensity (i.e. variation
of the polarizability along the normal mode) is obtained from the third-rank Raman tensors A:

IRaman = IRaman(A) where Aijk =
∂3E

∂Ei∂Ej∂uk

If phase modulations of atomic motions in different lattice cells are considered, then phonon dispersion is
taken into account:

Wk → Wk
ij =

∑
g

Hg
ij√

MiMj

eik·g Hg
ij =

∂2E

∂ui0∂ujg

By diagonalization of the dynamical matrices Wk one gets the phonon frequencies at each k point. A
full account of phonon dispersion is crucial to the description of many thermodynamic properties, to the
calculation of accurate phonon density-of-states, inelastic neutron scattering spectra, etc.

Tensorial Properties of Crystals

Many properties of crystals require a tensorial representation because of their anisotropic structure. For
instance, while a scalar number (the dielectric constant) is enough to describe the propagation velocity of
an electric field in a liquid, the 9 elements of a second-rank 3×3 tensor are needed for a crystal (i.e. light
propagates with different velocity along different crystallographic directions).

Linear and Non-linear Optical Properties

These properties are due to the interaction between light and matter. Light is an electromagnetic radiation
with an oscillating electric field and an orthogonal oscillating magnetic field. Several approximations can
be introduced to treat such a complex phenomenon. First of all, one might consider the electric field only:

E(r, ω) = E0e
i(k·r−ωt)

The field can then be considered as static (time-independent, ω = 0):

E(r) = E0e
i(k·r)

If UV-visible radiation is considered then the wavelength of the electric field is much longer then typical
inter-atomic distances so that the field can also be considered as constant (k = 0):

E(r) = E0

From an expansion of the energy in a Taylor’s series with respect to the electric field

E(E) = E(0) + µ · E +
1

2
α · E2 +

1

3!
β · E3 +

1

4!
γ · E4

5
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we introduce several static optical properties as energy derivatives (of increasing order) with respect to
electric field components:

dipole moment µi =

(
∂E

∂Ei

)

polarizability αij =

(
∂2E

∂Ei∂Ej

)

first hyper-polarizability βijk =

(
∂3E

∂Ei∂Ej∂Ek

)

second hyper-polarizability γijkl =

(
∂4E

∂Ei∂Ej∂Ek∂El

)

From the polarizability, one gets the dielectric tensor as:

ε = 1 +
4π

V
α

where V is the cell volume. We remind that the refractive index is proportional to the square root of the
dielectric response n ∝

√
ε. Linear and non-linear electric susceptibilities can be easily obtained from these

computed quantities.

Figure 3: 3D representation of the pressure dependence of the directional Young modulus of ZIF-8.

Mechanical/Elastic Properties

The stress-strain relation for a spring is given by Hook’s law f = −kx, where f is the applied force, x the
induced elongation and k is the spring elastic constant. Because of the anisotropic structure of a crystal,
both stress and strain become second-rank symmetric tensors so that the generalization of Hook’s law to
the case of an anisotropic medium reads:

σij =
∑
k

∑
l

Cijklηkl

where σ is the stress tensor, η is the strain tensor, and the Cijkl (elastic constants) are the elements of
a fourth-rank elastic tensor providing the link between stress and strain. It can be shown that the elastic
constants can be defined as second energy derivatives with respect to pairs of lattice deformations:

Cijkl =
1

V

(
∂2E

∂ηij∂ηkl

)

6
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These quantities are computed from either i) numerical second energy derivatives, or ii) numerical finite
differences of analytical cell gradients. Many elastic/mechanical properties can then be easily obtained
from the computed elastic tensor: bulk modulus, Young modulus, shear modulus, Poisson’s ratio, elastic
wave velocities, etc.

Piezoelectricity

Piezoelectricity is the ability of certain materials to convert a mechanical force into an electrical signal,
or viceversa. The direct piezoelectric effect (described by a third-rank tensor e) consists in applying a
mechanical deformation to a non-centrosymmetric crystal and in inducing an electric polarization. The
converse piezoelectric effect (described by a third-rank tensor d) consists in applying an external electric
field to a non-centrosymmetric crystal and in inducing a structural deformation. The direct piezoelectric
constants can be defined as derivatives of the polarization with respect to a strain or, equivalently, as second
mixed energy derivatives with respect to electric field components and strain components:

ekij =

(
∂Pk

∂ηij

)
=

1

V

(
∂2E

∂Ek∂ηij

)

They can be computed from the Berry phase, from CPHF/KS calculations, from DFPT, etc. Once the direct
piezoelectric constants and the elastic constants are computed, one can obtain the converse piezoelectric
ones from their combination as follows:

d = eS

where S = C−1 is the elastic compliance tensor.

Figure 4: Stress-optical effect.

Photoelasticity and Piezo-optics

The variation of the elements of the dielectric tensor (linked to the refractive indices) with respect to internal
or applied strain constitutes the so-called photoelasticity, or elasto-optics, of a crystal. The photo-elastic
Pockels constants are the elements of a fourth-rank tensor linking the variation of the inverse of the dielectric

7
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tensor to the elements of the strain tensor and can be computed as third mixed energy derivatives:

pijkl =

(
∂εij
∂ηkl

)
=

4π

V

(
∂3E

∂Ei∂Ej∂ηkl

)

From the knowledge of the photo-elastic tensor p and of the elastic compliance tensor S, the piezo-optic
tensor can also be computed,

π = pS with S = C−1

which provides useful information on the dependence on stress of the linear optical properties of a crystal.

Wavefunction-related Properties

Many properties of a system, related to the electron distribution in position and momentum spaces, can be
computed from the analysis of its wavefunction. However, the wavefunction is a rather complex quantity to
deal with. For a system of N electrons, it is a function of N space-spin variables:

Ψ(X1,X2, . . . ,XN ) with X ≡ (r, ω)

where r are the electron spatial coordinates and ω is the electron spin variable. It proves convenient to
introduce so-called density matrices to simplify the analysis of the wavefunction. The m-order density
matrix is a function of 2m space-spin variables defined as:

Γm(X1, . . . ,Xm;X′
1, . . . ,X

′
m) =

∫
Ψ(X1, . . . ,Xm, . . . ,XN )Ψ∗(X′

1, . . . ,X
′
m, . . . ,XN )dXm+1 . . . dXN

Density matrices play a very important role in the analysis of the electron distribution because of the fol-
lowing theorem:

“The expectation value of any m-particle operator can be obtained from the m-order density matrix
Γm”

In particular, one-electron properties (such as the electron charge distribution, the electron momentum dis-
tribution, X-ray structure factors, Compton profiles, auto-correlation functions, the electrostatic potential,
the kinetic energy, etc.) can thus be computed from the first-order density matrix Γ1(X;X′) that is a func-
tion of just 2 space-spin variables. A schematic representation is given in Figure 5 of the connections among
the first-order density matrix and some one-electron properties in position and momentum spaces.

Here we are not going to discuss into detail how these properties can be computed and analyzed because
several other lectures cover these topics. We just provide a partial list of the properties that can be obtained
from the wavefunction of the system, and of the schemes for their analysis.

Electron Charge Density Analysis

The electron charge distribution embodies rich information on the chemical nature of the interactions taking
place in the system. A variety of techniques can be used to try to extract as much information as possible
out of it.

A visual analysis can be performed based on 2D maps or 3D plots. The total electron density can be
represented as well as different “deformation densities” defined as the difference between the total density

8
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Figure 5: Schematic representation of the connections among the first-order density matrix and some one-electron
properties in position and momentum spaces.

and some reference densities (i.e. atomic densities of non-interacting atoms or ions, densities of non-
interacting molecules, etc.). Colored 3D representations of the density can be obtained by taking into
account the local value of the electrostatic potential, which allows to identify possible chemically active
and accessible sites to guest molecules in complex structures. For open-shell, magnetic systems, the spin
density σ(r) = ρα(r)− ρβ(r) can also be computed and plotted.

A large variety of schemes can be used to analyze the electron charge density numerically. X-ray structure
factors can be computed and compared to the experiment (dynamical thermal effects can be included by
computing Debye-Waller factors from atomic anisotropic displacement parameters). The total electron
charge density can be partitioned into atomic contributions according to several schemes (Mulliken, Born,
Bader, Hirshfeld, etc.). A topological analysis can be performed as in Bader’s quantum theory of atoms
in molecules (QTAIM). The spatial distribution of the density can be analyzed in terms of the Electron
Localization Function (ELF), Maximum Probability Domain (MPD), and many other schemes.

Electron Momentum Density Analysis

The electron momentum density provides a complementary information with respect to the electron charge
density. As per the electron charge density, 2D maps or 3D plots can be used to visually analyze it. At
variance with the electron charge density, the electron momentum density is a function centered in a single
point (the origin of momentum space) so that the study of its anisotropy is crucial to its analysis. The total
density can be plotted as well as the difference with respect to its “spherical average”.

Directional Compton profiles and auto-correlation functions are properties related to the electron mo-
mentum distribution that can be computed. For open-shell systems, magnetic Compton profiles can also be
evaluated as differences between contributions from spin-up and spin-down electrons.

9
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Density Functional Theory (DFT) is a ground-state theory in which the emphasis is on the 
charge density as the relevant physical quantity. DFT is highly successful in describing structural 
and electronic properties in a vast class of materials, ranging from atoms and molecules to 
simple crystals to complex extended systems (including glasses and liquids). DFT has become a 
common tool in first-principles calculations aimed at describing - or even predicting - properties 
of molecular and condensed matter systems. 

The Hohenberg-Kohn theorem Let us consider a system of N interacting spinless electrons 
under an external potential V(r) (usually the Coulomb potential of the nuclei). If the system has a 
nondegenerate ground state, it is obvious that there is only one ground-state charge density n(r) 
that corresponds to a given V(r). In 1964 Hohenberg and Kohn demonstrated the opposite, far 
less obvious result: there is only one external potential V(r) that yields a given ground-state 
charge density n(r). The demonstration is very simple, using a reductio ad absurdum argument. 
Let us consider a many-electron Hamiltonian H=T+U+V, with ground state wavefunction Ψ. T 
is the kinetic energy,  U the electron-electron interaction, V the external potential. The charge 
density n(r) is defined as n(r)= N ∫|Ψ(r,r2, r3,...,rN)|2dr2...drN . Let us consider now a different 
Hamiltonian  H’=T+U+V’ (V and V’ do not differ simply by a constant), with ground state 
wavefunction Ψ'. Let us assume that the ground state charge densities are the same: n[V]=n'[V']. 
The following inequality holds: E'=〈Ψ'|H'|Ψ'〉 < 〈Ψ|H'|Ψ〉, but 〈Ψ|H'|Ψ〉=〈Ψ|H-V+V’|Ψ〉, that is, 
E' < E + ∫ (V'(r)-V(r))n(r)dr. The inequality is strict because Ψ and Ψ' are different eigenstates of 
different Hamiltonians. By reversing the primed and unprimed quantities, one obtains an absurd 
result. This demonstrates that no two different potentials can have the same charge density. 

The Kohn-Sham equations One year later, Kohn and Sham (KS) reformulated the problem in a 
more familiar form and opened the way to practical applications of DFT. The system of 
interacting electrons is mapped on to an auxiliary system of non-interacting electrons having the 
same ground state charge density n(r). For a system of non-interacting electrons the ground-
state charge density is representable as a sum over one-electron orbitals, the KS orbitals ψi(r): 
n(r)=2∑i |ψi(r)|2, where i runs from 1 to N/2 if we assume double occupancy of all states, and the 
KS orbitals are the solutions of the Schrödinger equation 

( - (ℏ2/2m)∇2 + VKS(r))ψi(r)=εi ψi(r) 
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(m is the electron mass) obeying orthonormality constraints∫ψ*
i(r)ψj(r)dr =δij. The existence of a 

unique potential VKS(r) having n(r) as its ground state charge density is a consequence of the 
Hohenberg-Kohn theorem, holding irrespective of the electron-electron interaction U. 
The problem to determine VKS(r) for any given n(r) is solved variationally: for an arbitrary 
variation of the ψi(r), under the orthonormality constraints, the first-order variation of E must 
vanish. This implies that the functional derivative, δE'/δψi(r), of the constrained functional, E'= E 
- ∑ij λij (∫ψ*

i(r)ψj(r)dr -δij), where  λij are Lagrange multipliers, must vanish. It is convenient to 
rewrite the energy functional as follows: 

E = Ts[n(r)] + EH[n(r)] + EXC[n(r)] + ∫n(r)V(r)dr . 
The first term is the kinetic energy of non-interacting electrons: 

Ts[n(r)] =  - (ℏ2/2m) 2 ∑i ∫ψ*
i(r)∇2ψj(r)dr . 

The second term (called the Hartree energy) contains the electrostatic interactions between 
clouds of charge: 

EH[n(r)] = (e2/2) ∫n(r)|r-r'|-1n(r’) dr dr‘. 
The third term, called exchange-correlation (XC) energy, contains all the remaining terms and 
our ignorance. The logic behind such procedure is to subtract out easily computable terms 
which account for a large fraction of the total energy. Using δn(r)/δψ*

i(r)=ψ*
i(r)δ(r-r) one finds: 

δTs/δψ*
i(r)=-(ℏ2/2m)2∑i ∇2ψi(r); the Hartree potential VH(r)=δEH/δψ*

i(r)=e2∫n(r’)|r-r'|-1dr‘ψi(r), 
the XC potential VXC(r)=(δEXC/δn(r)) By making a subspace rotation in the space of ψi's that 
leaves the charge density invariant, we can bring the matrix of Lagrange multipliers to diagonal 
form: λij=δijεi . We finally obtain the KS equations:  

( -(ℏ2/2m)∇2 + VH(r) + VXC[n(r)] + V(r) ) ψi(r) = εi ψi(r), 
or (HKS-εi)ψi(r)=0, where HKS=(-ℏ2∇2/2m)+VKS(r) is the KS Hamiltonian, VKS=VH(r)+VXC(r)+V(r). 
Note that HKS(r) is related to the functional derivative of the energy via δE/δψ*

i(r) = HKSψi(r). 

Exchange-correlation functional To be useful, KS equations require an approximation to  the 
(unknown) EXC and VXC functionals. As early as 1965 KS introduced the  Local Density 
Approximation (LDA): in the spirit of Slater's local exchange, EXC is approximated using the XC 
energy density εXC(n) of the homogeneous electron gas at the local density n=n(r): 

EXC[n(r)] =∫ n(r) εXC(n(r)) dr 
Approximate forms for εXC(n) have been known for a long time, going back to Wigner (1931). 
Highly accurate results from  Quantum Monte-Carlo techniques were found by Ceperley and 
Alder and parameterized by Perdew and Zunger: 

εXC(n) = - 0.9164/rs -  0.2846/( 1+1.0529 rs
½ +0.3334 rs ), rs ≥ 1; 

εXC(n) = - 0.9164/rs – 0.0960 + 0.0622 log(rs) - 0.0232 rs + 0.0040 rs log(rs), rs ≤ 1. 
Here rs=(3n/4π)1/3 is in Bohr radii and εXC  in Ry. The first term is the Hartree-Fock exchange 
contribution, the remaining terms are correlation energy. The XC potential is straightforwardly 
obtained by derivation:  VXC(r) = (εXC(n)+n(dεXC(n)/dn))n=n(r). 
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In spite of its simplicity, LDA is surprisingly successful: bond lengths, lattice parameters, elastic 
constants and vibrational frequencies, surface energies for many condensed-matter systems are 
computed with good accuracy, down to 1÷2% errors. There are however also some serious 
drawbacks, notably: 

• The (in)famous band gap problem: the gap computed as Δg=εc−εv (or HOMO-LUMO in 
quantum chemistry parlance) wildly underestimates (∼50%) the true band gap 

• Inability to properly describe strongly correlated materials, e.g., transition metal oxides 
• Strongly overestimated (∼20%) cohesive energies, sometimes hiding a fundamental 

problem: van der Waals (dispersive) interactions are in principle absent from LDA. 
Our understanding of the origin of such problems has much progressed in recent years. It can be 
shown that the  exact functional must obey sum rules and have some features that are hard to 
reproduce with LDA. In particular: i) If we consider the extension to fractional charge, VXC must 
have a discontinuity for integer values; ii) the self-interaction of an electron with itself must be 
absent (it is in Hartree-Fock, not so in LDA).  
The search for better functionals is an active research field, producing a flurry of improved 
functionals that yield better and better results, at the price of an increased computational 
complexity. John Perdew introduced the Jacob’s Ladder  metaphor: 

1. At the lowest rung, LDA, with εXC(n(r)) depending only upon the local charge density.  
2. The next rung is the Generalized Gradient Approximation (GGA), in which εXC 

depends also upon the gradient of n(r): EXC=∫n(r)εXC(n(r),|∇n(r)|)dr. With respect to 
LDA, GGA is marginally more expensive, but yields better structural properties and 
much better cohesive energies. It doesn’t solve any of the other major problems cited 
above, though. GGA is the basic “standard” in DFT simulations since ∼20 years and 
until recently. Some of the most popular GGA’s are PBE, PW91, BLYP. 

3. One rung up, the recent “meta-GGA” functionals: EXC=∫n(r)εXC(n(r),|∇n(r)|,τ(r))dr, 
where τ(r) = ∑i |∇ψi(r)|2 is the “kinetic energy density”. These functionals are more 
complex to use: the KS Hamiltonian does not have any longer a simple form, more 
computationally expensive and numerically difficult than plain LDA or GGA. They are 
however able to deal with different types of bonding and yield very accurate results for 
structural properties. The recent SCAN functional is a promising candidate to replace 
GGA as “standard”, but needs faster and more stable implementations than today’s. 

4. One rung up, hybrid functionals, containing some admixture of the exact exchange 
energy EHF, calculated  with KS orbitals as in Hartree-Fock theory: 

EXC=αxEHF+(1-αx)EX +EC

where EX and EC are the exchange and correlation part of the DFT functional, 
respectively, and αx=0.2÷0.3, depending upon the specific functional (PBE0: αx=0.25, 
B3LYP: αx=0.2). The XC potential contains a nonlocal Vx contribution. Hybrid 
functionals correct most of the GGA problems and yield very accurate results, that 
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however depend upon αx, often used as an adjustable parameter. Hybrid functionals are 
easily and efficiently implemented using a localized basis set and are thus the method 
of choice for molecular calculations using quantum chemistry codes. With a plane-
wave basis set, instead, the implementation is straightforward but very slow (tens of 
times more than GGA). Much progress is underway in this field with the usage of 
localized orbitals (Wannier functions and the like) to compute the Vx contribution.  

5. One rung up: RPA-like approaches, very accurate and computational very heavy. 
In addition to functionals mentioned above, it is worth mentioning a few “DFT+corrections” 
approaches for strongly correlated materials and for van der Waals forces: 

• DFT+U: a Hubbard-like term, accounting for strong Coulomb correlations in systems 
with highly localized, atomic-like states, is added (typically to a GGA functional): 
EDFT+U[n(r)] = EXC[n(r)]  + EU[n(r)], where EU[n(r)] = U/2 ∑σ Tr[nσ(1-nσ)], U is a Coulomb 
repulsion (a few eV, system-dependent), nσ is the matrix of orbital occupancies of the 
chosen set of atomic-like states. DFT+U is a quick-and-dirty but economical solution 
for a deep problem of DFT: the lack of discontinuity in approximated functionals, due 
to incomplete self-interactions cancellation, favors unphysical fractionary occupancy of 
localized states. DFT+U also improves the gap and level alignement in heterostructures, 
at the price of introducing an adjustable parameter U. 

• vdW-DF functionals: EXC contains a nonlocal term Enl[n(r)]=½∫n(r) Φ(r,r') n(r’)dr dr', 
where Φ(r,r') = Φ(n(r),∇n(r),n(r'),∇n(r’),|r-r'|), that accounts for van der Waals forces. 
Can be computed with a reasonable computational overhead (Soler's technique) with 
respect to GGA, yielding generally good results, but sometimes overestimating binding. 

• Grimme's DFT+D, adding a semi-empirical correction to GGA:  
EDFT+D = EXC + EvdW(Ri),  EvdW= -(s6/2) ∑i≠j (C6

ij/R6
ij)fdamp(Rij) 

where the Ri are atomic positions, Rij=|Ri-Rj|, s6 is a global scaling factor depending upon 
the specific GGA, C6

ij=(C6
iC6

j)½, where C6
i are dispersion coefficients for the i-th atom; 

the damping function fdamp prevents singularities for R→0. Parameters are fitted to 
experiments or to accurate theoretical data. The more sophisticated DFT+D3 version 
includes three-body and other terms in the semi-empirical correction, yielding good 
results for vdW-bonded system with a modest computational overhead with respect to 
GGA. It can hardly be considered a “first-principle” approach, though. 

• Tkatchenko-Scheffler and exchange-hole dipole model (XDM): Similar in spirit to 
Grimme's DFT+D, but C6 coefficients are derived from first principles. 

The plane-wave pseudopotential method The atomic arrangement in perfect crystals is 
described by a periodically repeated unit cell. For many interesting physical systems, however, 
perfect periodicity is absent, but the system is either approximately periodic or periodic in one or 
two directions or periodic except for a small part. Examples of such systems include surfaces, 
point defects in crystals, substitutional alloys, heterostructures (“superlattices”  and quantum 
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wells). In all such cases it is convenient to simulate the system with a periodically repeated 
fictitious supercell. The form and the size of the supercell depend on the physical system being 
studied, e.g.: The study of point defects requires that a defect does not interact with its periodic 
replica in order to accurately simulate a truly isolated defect. For disordered solids, the supercell 
must be large enough to guarantee a significant sampling of the configuration space. For 
surfaces, one uses a crystal slab alternated with a slab of empty space, both large enough to 
ensure that the bulk behavior is recovered inside the crystal slab and that the surface behavior is 
unaffected by the presence of the periodic replica of the crystal slab. 
In the examples mentioned above, the supercell approach is usually more convenient than the 
“cluster” one', that is, simulating an extended system by taking a finite piece of material, due to 
the absence of an abrupt termination in the supercell approach. Even finite systems (molecules, 
clusters) can be studied using supercells. Enough empty space between the periodic replicas of 
the finite system must be left so that the interactions between them are weak. The use of 
supercells for the simulation of molecular or completely aperiodic systems (liquids, amorphous 
systems) has become quite common in recent years, in connection with  first-principles 
simulations (especially molecular dynamics simulations)  using a plane-wave (PW) basis set. In 
fact there are important  computational advantages in the use of PW's that may offset the 
disadvantage of inventing a periodicity where there is none. 
The size of the unit cell - the number of atoms and the volume - is very important. Together 
with the type of atoms it determines the difficulty of the calculation: large unit cells mean large 
calculations. Unfortunately many interesting physical systems are described, exactly or 
approximately, by large unit cells. 

Plane-wave basis set In the following we will assume that our system is a crystal with lattice 
vectors R and reciprocal lattice vectors G.  It is not relevant whether we are dealing with a  truly 
periodic crystal or with a supercell describing an aperiodic system. The KS orbitals are classified 
by a band index and a Bloch vector k in the Brillouin Zone (BZ).  
A PW basis set is defined as 〈r|k+G〉=V-½ ei(k+G)•r for all G vectors such that ℏ2|k+G|2/2m ≤ Ecut, 
where V is the crystal volume, Ecut is a cutoff on the kinetic energy of PW's (from now on, simply 
the cutoff).  PW's have many attractive features: they are simple to use, unbiased (there is no 
freedom in choosing PW's: the basis is fixed by the crystal structure and by the cutoff), 
orthonormal, complete in the limit of infinite cutoff. Checking for convergence can be easily 
done by increasing the only relevant convergence parameter: the cutoff. 
Unfortunately the extended character of PW's makes it very difficult to accurately  reproduce 
localized functions such as the charge density around a nucleus or even worse, the 
orthogonalization “wiggles” due to the presence of core states in atoms. In order to describe 
features varying on a length scale δ, one needs Fourier components up to q∼2π/δ. In a solid, this 
means a number of PW’s Npw∼4π (2π/δ)3/3ΩBZ (ΩBZ is the volume of the BZ).   
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A simple estimate for diamond is instructive. The 1s state of the carbon atom has its maximum 
around 0.3 a.u., so δ=0.1 a.u. is a reasonable value (1 a.u.=1 Bohr radius=0.52977 Å). Diamond 
has a face-centered cubic (fcc) lattice, lattice parameter a0=6.74 a.u., ΩBZ=(2π)3/(4a0

3). One finds 
Npw∼ 250,000 PW's, clearly too much for practical use. 

Pseudopotentials The idea of replacing the full atom with a much simpler pseudoatom having 
valence electrons only arises naturally (apparently in a 1934 paper by Fermi for the first time). 
Pseudopotentials} (PP's) have been widely used in solid-state physics starting from the 1960's. In 
earlier approaches PP's were devised to reproduce some known experimental solid-state or 
atomic properties such as energy gaps or ionization potentials. Other types of PP's were obtained 
from band structure calculations with the OPW, orthogonalized PW, basis set, by separating the 
smooth (PW) part from the orthogonalization part in the wavefunctions. The first modern 
version of PP's are the so-called norm-conserving PPs. These are atomic potentials which build to 
mimic the scattering properties of the true atom. For a given reference atomic configuration,a 
norm-conserving PP must fulfill the following conditions: 

1. all-electron and pseudo-orbitals must have the same energy, and 
2. they must be the same beyond a given “core radius”' rc, usually located around the 

outermost maximum of the atomic orbital; 
3. the pseudo-charge and the true charge contained in the region r<rc  must be the same. 

This last condition explains the name “norm-conserving”. There is an historical reason for this: 
some earlier PP's violated condition 3 (this was known as the “orthogonality hole'' problem). 
Note that the definition “all-electron'', here and in the  following, refers to a KS calculation that 
includes core electrons, not to a many-electron wavefunction. 
Norm-conserving PP are smooth functions and a relatively small PW basis set is sufficient. They 
are nonlocal because it is usually impossible to mimic the effect of orthogonalization to core 
states on different angular momenta ℓ with a single function. There is a PP for every ℓ: 

Vps ≡ Vloc(r) + ∑ ℓ Vℓ (r) Pℓ  = Vloc(r) + ∑ℓm Vℓ(r)Yℓm (r) δ(r-r') Yℓm
*
 (r'), 

where Pl = |ℓ〉〈ℓ| is the projection operator on states of angular momentum ℓ. The local part of 
the potential has a long-range tail going like Vloc(r)≅-Zv e2/r, where Zv is the number of valence 
electrons.  PP’s are however seldom used in this form. For computational reasons, they are recast 
into a fully nonlocal, separable form. The nonlocality of PP's introduces some additional but 
limited complications in the calculation. In particular, one has to do the following generalization 
to the DFT formalism: ∫V(r)n(r)dr→∑i〈ψi |V|ψi 〉=∑i∫ψ*

i(r)V(r,r‘)ψi(r‘)drdr‘ 
Old and recent experience shows that PP's are equivalent to the frozen core approximation: PP 
and all-electron calculations on the same systems yield almost indistinguishable results (except 
for those cases in which core states are not sufficiently frozen). It should be remarked that the 
use of PP's is not limited to PW basis sets: PP's can be (and are actually) used in conjunction with 
localized basis sets as well. 
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Ultrasoft PPs and PAW Norm-conserving PP's are still quite “hard” - that is, they contain a 
significant amount of Fourier components with large q - for a number of atoms, such as N, O, F, 
and the first row of transition metals. For these atoms little is gained in the pseudization, because 
there are no orthonormality wiggles that can be removed from the 2p and 3d states, respectively. 
Ultrasoft PP's have been devised that are much softer than ordinary norm-conserving PP's, at the 
price of a considerable additional complexity. The heavy formalism of ultrasoft PP's tends to 
hide the underlying logic (and physics). An alternative approach, called Projector Augmented 
Waves (PAW), is much more transparent. Moreover PAW includes as special cases a number of 
other methods and provides a simple and consistent way to reconstruct all-electron orbitals 
from pseudo-orbitals. These are needed for reliable calculation of such observables as NMR 
chemical shifts and hyperfine coupling coefficients. 
The idea of PAW is to find a mapping between the all-electron and the pseudo orbitals via a 
suitable linear operator. The pseudo-orbital must be a smooth object that can be expanded into a 
small PW basis set. Let us consider for simplicity the case of a single atom in the system. In a 
core region (r<rc) centered around the atom, the mapping is defined as  

|φi
ae

 〉 = (1 + T) |φi
ps

 〉 
where the functions |φi

ae
 〉 are solutions, regular at the origin but not necessarily bound, of the 

all-electron atomic KS equation; the functions  |φi
ps

 〉 are the corresponding pseudo-functions, 
that are much smoother in the core region and join smoothly to the |φi

ae
 〉 at the border of core 

region (r=rc). Outside the core region, we set T=0; inside, we assume that we may write a 
pseudo-orbital |ψps 〉 for our molecular or solid-state system as a sum over the atomic pseudo-
waves |φi

ps
 〉: |ψps 〉 = ∑i ci |φi

ps
 〉. By applying the operator (1 + T) to both sides of the above 

expansion we find |ψae 〉 = ∑i ci |φi
ae

 〉, where |ψae 〉 is the all-electron wavefunction. The above 
result can be recast into the form 

|ψae 〉 = |ψps 〉+∑i ci (|φi
ae

 〉-|φi
ps

 〉) 
It remains to define the ci coefficients. Let us introduce the projectors βi such that  

〈βi| φj
ps 〉 = δlm, ∑i |φi

ps
 〉〈βi| = I. 

It is easy to verify that ci= βi| ψps 〉and that we can write |ψae 〉 = |ψps 〉+∑i (|φi
ae

 〉-|φi
ps

 〉)〈βi| ψps 〉, or 
|ψae 〉 = (1+T) |ψps 〉. The operator T=∑i (|φi

ae
 〉-|φi

ps
 〉)〈βi| thus projects out the atomic pseudo-

states φi
ps and replaces them with the all-electron states φi

ae. The T operator is a purely atomic 
quantity that is obtained from a judicious choice of the φi

ae all-electron atomic states, the 
corresponding pseudo-states φi

ps, and the projectors βi. The equations to solve in the PAW 
method are then obtained by inserting the above form for ψae in the energy functional and by 
finding its minimum with respect to the variation of the smooth part only, ψps. An important 
feature of the PAW method is that the charge density is no longer given simply by the square of 
the orbitals, but it contains in general an additional (augmentation) term: 

n(r) = ∑i|ψi 
ps(r)|2 + ∑i ∑ℓm〈ψi

ps| βℓ
 〉  qℓm (r) 〈βm|ψi

ps 〉 
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where qℓm (r)= φℓ
ae(r) φm

ae(r)-φℓ
ps(r) φm

ps(r) (using the completeness relation). Conversely, the 
pseudo-orbitals are no longer orthonormal, but obey a generalized orthonormality relation: 

〈ψi 
ps|S|ψj 

ps 〉 = δij, S = I + ∑ℓm| βℓ
 〉 Qℓm 〈βm|, Qℓm=∫qℓm (r)dr. 

In the PAW formalism, the qℓm(r) functions are stored on an auxiliary radial grid centered on 
atoms. Ultrasoft PP's can be derived from PAW by pseudizing the qℓm(r), that can be thus 
expanded into plane waves. Norm-conserving PP's in the separable form can be derived from 
PAW if the atomic states φℓ

ae(r) and φℓ
ps(r) obey the norm-conservation rule (thus S=1).  

Brillouin-Zone sampling In order to calculate the charge density n(r) in a periodic systems, one 
has to sum over an infinite number of k-points: 

n(r) = ∑ki|ψki (r)|2

where the index i runs over occupied bands. Assuming periodic (Born-Von Kàrmàn) boundary 
conditions: ψ(r+L1R1)=ψ(r+L2R2)=ψ(r+L3R3)=ψ(r), a crystal has  L=L1L2L3 allowed k-points (L is 
also the number of unit cells). In the thermodynamic limit of an infinite crystal, L→∞, the 
discrete sum over k becomes an integral over the BZ. Experience shows that this integral can be 
approximated by a discrete sum over an affordable number of k-points, at least in insulators and 
semiconductors. When present, symmetry can be used to further reduce the number of 
calculations to be performed. Only one k-point is left to represent each star - the set of k-points 
that are equivalent by symmetry -with a weight w that is proportional to the number of k-points 
in the star. The infinite sum over the BZ is replaced by a discrete sum over a set of points kn and 
weights wn: 

(1/L)  ∑k fk(r) → ∑n wn fkn(r). 

The resulting sum is then symmetrized to get the charge density. Suitable sets for BZ sampling in 
insulators and semiconductors are called special points. This name is somewhat misleading: in 
most cases those sets just form uniform grids in the BZ. 
In metals things are more difficult because one needs an accurate sampling of the Fermi surface. 
The DFT extension to fractionary occupation numbers is used. The smearing and the 
tetrahedron techniques, or variations of the above, are generally used. 
In large units cells and supercells, the k-point grid is often limited to the Γ point (k=0). 

Iteration to self-consistency The KS equations must be solved self-consistently. We supply an 
input charge density nin(r) to the KS equations and we get an output charge density nout(r). Such 
procedure defines a functional: nout(r) = A[nin(r)]. At self-consistency, n(r) = A[n(r)]. The first 
algorithm that comes to the mind is to simply use nout(r) as the new input charge density, setting 
n(i+1)

in(r)=n(i)
out(r), where the superscripts indicate the iteration number. Unfortunately  this 

usually does not work. The reason is that there is no guarantee that the error on output is smaller 
than the error on input. If δnin(r) is the error on input, the error on output, close to self-
consistency, will be  δnout(r)≅ ∫(δA[n(r)]/δn(r’))δnin(r’) dr’≡ (Jδnin)(r), which may or may not be 
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smaller than the input error: it depends on the size of the largest eigenvalue, eJ, of the operator J, 
which is related to the dielectric response of the system. Usually eJ>1 and the iteration does not 
converge.  
A simple algorithm that generally works, although sometimes slowly, is simple mixing. A new 
input charge density is generated by mixing the input and output charges: 

n(i+1)
in(r) = (1-α)n(i)

in(r) + αn(i)
out(r) 

The value of α must be chosen empirically in order to get fast convergence. The error with 
respect to self-consistency becomes δnout≅ [(1-α)+αJ]δnin and it is easily seen that the iteration 
converges if α<|1/eJ|. In general, the convergence is easier for small cells and symmetric systems, 
more difficult for larger cells, low symmetry, cells elongated along one directions, surfaces. 
Relatively big values (α=0.3÷0.5) can be chosen in “easy”' systems, smaller values are appropriate 
for cases of difficult convergence.  
Better results are obtained with more sophisticated algorithms (to name a few: Anderson, 
Broyden, Direct Iteration in Inverse Space, DIIS) that use informations collected from several 
preceding iterations. Let us sketch the logic of such algorithms. We have a sequence of n(i)

in 
producing n(i)

out from preceding iterations. We look for the linear combination of input n(i)
new: 

n(i)
new= ∑j cj  n(j)

in,  ∑j cj=1 
that minimizes an appropriate norm ||n(i,out)

new-n(j,in)
new||. Close to self-consistency, one can write 

||n(i,out)
new-n(j,in)

new||≅|| ∑j cj (n(j)
out-n(j)

in) || and the coefficients cj are determined by imposing that 
such norm is minimum. Then we mix n(j,in)

new with n(i,out)
new = ∑j cj  n(j)

out (using e.g. simple mixing) 
to obtain n(i+1)

in=(1-α)∑j cj  n(j)
in + α∑j cj  n(j)

out. 

Diagonalization of the Hamiltonian When the KS orbitals are expanded on a finite basis set,  
the KS equations take the form of a secular equation: ∑G’ H(k+G,k+G')ψk,i (G')=εk,iψk,i (G), where 
the matrix elements of the Hamiltonian have the form 

H(k+G,k+G')  =  (ℏ2/2m)|k+G|2δ G-G'
 + Vscf(G-G') + Vloc(G-G') + Vnl(k+G,k+G') 

The term Vscf(G-G') is the Fourier transform of the XC and Hartree potential: 
Vscf(G-G') = (1/Ω) ∫ Vscf(r) ei(G-G')rdr 

(Ω is the volume of the unit cell, the integration is on a single cell) and the same applies to Vloc 
that comes from the local term in the PP's. The nonlocal contribution Vnl comes from PP's: 

VNL (k+G,k+G') = (1/Ω) ∫ VNL(r,r’) ei(k+G)rdr ei(k+G')r' dr dr' 
With USPP and PAW, the secular problem generalizes to 

∑G’ H(k+G,k+G')ψk,i(G')=εk,i∑G’S(k+G,k+G') ψk,i (G), 
where S is the overlap matrix. We need ot find the lowest Nb eigenvalues and eigenvectors (only 
valence states for insulators, a few more for metals) of an Npw x Npw Hermitian matrix. This task 
is performed using iterative techniques that do not require to store the entire matrix but just 
need products Hψ. These are computed quickly and effectively using the dual-space technique, 
jumping from real to reciprocal space and back using FFT, Fast Fourier-Transform. 
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1. Introduction 
As is well known, chemistry is still usually and largely interpreted in terms of local concepts, at 
least at a first-approximation level. For instance, when looking at molecules, the very first 
interpretation of their electronic structure is still based on the corresponding Lewis diagrams, 
which show chemical bonds as simple lines drawn between atoms. Furthermore, in organic 
chemistry, the reasoning is always strongly based on functional groups, which are small 
molecular fragments that keep their main features in different compounds, and reaction 
mechanisms are usually depicted by means of arrows that represent electron-flows occurring 
during the breaking and formation of bonds. 
Nevertheless, in theoretical chemistry, excluding the Valence-Bond (VB) approaches,1,2 which 
have been developed only by a restricted group of scientists and can be applied only to small 
systems due their large computational cost, the most widely used MO-based methods3 (namely, 
techniques based on Molecular Orbitals) provide a completely delocalized picture of molecular 
electronic structure. This is the reason why, over the years, several computational strategies have 
been successfully developed in order to recover traditional chemical concepts from quantum 
chemistry calculations. In this context, it is necessary to distinguish between a posteriori and a 
priori techniques. 
Among the former, a prominent role is obviously occupied by the so-called topological 
approaches. The most popular one is the Quantum Theory of Atoms in Molecules4 (QTAIM) 
that primarily enables to rationalize theoretical (but also experimental) electron densities in 
terms of nuclear attractors, bond paths and bond, ring & cage critical points, all of them 
descriptors allowing to establish a link between quantum mechanical calculations and the 
traditional chemical perception. Other important a posteriori topological methods are also the 
ones that fully exploit the information content of the one-electron density matrices obtained 
from quantum chemistry calculations and that provide real-space functions strictly related to the 
electron pairing, such as the Electron Localization Function (ELF),5 the Electron Localizability 
Indicator (ELI)5 and the Localized Orbital Locator (LOL).7 

Of course, in the framework of the a posteriori techniques, it is also worth mentioning the 
traditional methods of quantum chemistry for the localization of the completely delocalized 
canonical Hartree-Fock Molecular Orbitals (MOs, see Figure 1A) obtained as solutions of the 
canonical Hartree-Fock equations.3 In fact, these strategies consist in performing unitary 
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transformations of the canonical Hartree-Fock MOs, thus providing an equivalent set of 
Molecular Orbitals that maximize or minimize a chemically/physically meaningful functional. In 
this context, some of the most representative methods are: i) the Foster-Boys approach,8,9 which 
aims at minimizing the spatial extension of the Molecular Orbitals, ii) the Edminston-
Ruedenberg technique,10,11 whose goal is to maximize the “auto-repulsion energy”, iii) the Von 
Niessen strategy,12 which tries to maximize the “charge density overlap”, and iv) the Pipek-
Mezey procedure,13,14 which maximizes a functional based on the Mulliken population. All the 
methods mentioned above provide Molecular Orbitals that are mainly localized on small 
molecular units, but that are also characterized by the so-called “orthogonalization tails” that 
extend beyond the main localization regions (see Figure 1B). For this reason, they cannot be 
unambiguously associated with small molecular fragments. In order to obtain Molecular Orbitals 
strictly localized on (and, consequently, unambiguously associable with) small molecular units 
(e.g., atoms, bonds or functional groups), it is actually necessary to resort to the Extremely 
Localized Molecular Orbitals15,16 (ELMOs, see Figure 1C), which are the main topic of this 
lecture. 

 

Figure 1. (A) Completely delocalized canonical Hartree-Fock Molecular Orbital, (B) Pipek-Mezey Localized Molecular 
Orbital with typical orthogonalization tail and (C) Extremely Localized Molecular Orbital for a C-C bond of butadiene. 

The technique to obtain ELMOs has been introduced by Stoll and coworkers in 198015 and is 
strictly connected both to the earlier “group function method” introduced by McWeeny in the 
1960s17-19 and to many other theoretical approaches that have been developed over the years20-29 
to decompose global electronic wavefunctions into functions describing smaller subsets of 
electrons. The Stoll method15 is a typical a priori strategy of theoretical chemistry that 
introduces traditional chemical concepts before performing the calculations. In fact, the 
technique is based on the a priori definition of a localization scheme that subdivides the 
investigated chemical compound into different subunits according to the chemical intuition (see 
Figure 2A). Of course, the most intuitive (and most adopted) choice is a localization pattern 
corresponding to the Lewis structure of the system under exam, which is therefore characterized 
by atomic fragments for the core and lone-pair electrons and by bond fragments for the bond 
electron-pairs. As a consequence of this preliminary fragmentation, the Molecular Orbitals 
corresponding to the different subunits are expanded on local basis-sets (i.e., sets of basis 
functions (or atomic orbitals) centred only on the atoms belonging to the fragments) and the 
ELMOs are afterwards obtained by variationally minimizing the energy associated with the 
single Slater determinant constructed with them (from now on, ELMO wavefunction). It is 
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possible to show that this is equivalent to solving these modified Hartree-Fock equations for 
each fragment:15 

 
with  as the modified Fock operator for the j-th fragment given by 

 
where  is the usual Fock operator of quantum chemistry,  is the local density operator for the 
j-th subunit, which depends only on the occupied ELMOs of the fragment, and  is the global 
density operator, which, on the contrary, depends on all the occupied ELMOs of the system and, 
for this reason, couples all the modified Hartree-Fock equations associated with the different 
subunits. 

 

Figure 2. (A) Localization scheme for the water molecule with the two overlapping bond fragments O−H1 and O−H2 
explicitly shown. For the sake of clarity, the atomic fragment O, which describes core and lone-pair electrons of the 
oxygen atom, is not depicted; (B) ELMO for the core electrons of the oxygen atom; (C) ELMO for the O-H1 bond; (D) 
ELMO for the O-H2 bond. 

Since both atomic and bond fragments are simultaneously considered in the calculations, the 
Stoll method provides MOs strictly localized on both atomic (see Figure 2B) and bond (see 
Figures 2C and 2D) subunits, thus taking into account chemical bonding directly. Due to their 
extreme localization, ELMOs can be indeed associated with small molecular units without 
ambiguity and, following a well-defined rotation procedure,30,31 they can be transferred from 
molecule to molecule as electronic LEGO building blocks31,32 in order to reconstruct 
wavefunctions and electron densities of macromolecules (e.g. proteins) almost instantaneously 
(see Figure 3). 

 

Figure 3. Extremely Localized Molecular Orbitals as elementary, electronic LEGO building blocks to reconstruct 
wavefunctions and electron densities of macromolecules. 
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Other than introducing the concept of ELMOs, this lecture will also consist in discussing the 
current use of ELMOs in quantum crystallography. In, particular, it will be shown how their 
strict localization has been exploited i) to introduce traditional chemical concepts a priori within 
the context of the X-ray constrained wavefunction (XCW) approach33-40 (see section 2) and ii) to 
construct new libraries of Extremely Localized Molecular Orbitals41 with the final goal of 
reconstructing electron densities and refining crystallographic structures of proteins (see section 
3). Concerning this last point, preliminary results obtained through the coupling of the recently 
constructed ELMO-libraries41 with the Hirshfeld Atom Refinement (HAR)42-45 will be also briefly 
discussed. 

2. ELMOs in the framework of the X-ray constrained wavefunction approach 
As just mentioned above, in this section it will be shown how the strict localization of the 
Extremely Localized Molecular Orbitals has been exploited to introduce a priori the traditional 
chemical picture of molecular electronic structure within the X-ray constrained wavefunction 
approach33-40. In particular, in section 2A the main topic will be the X-ray constrained ELMO 
(XC-ELMO) method,46-49 a technique that combines the XCW strategy introduced by Jayatilaka 
with the approach proposed by Stoll to obtain Extremely Localized Molecular Orbitals. In 
section 2B, the focus will be on the more recent X-ray constrained ELMO-Valence Bond50,51 
(XC-ELMO-VB) method, another computational technique that exploits the strict localization 
of the ELMOs to keep a high chemical interpretability of the results and that can be seen as the 
first-“prototype” many-determinant XCW approach. 

2.A The X-ray constrained ELMO method 
Since the XC-ELMO technique is a combination of the original XCW approach33-40 with the 
traditional ELMO method,15 its working equations can be simply obtained by minimizing the 
energy associated with the ELMO wavefunction (as in the Stoll method15) with the additional 
constraint of reproducing a set of collected structure factor amplitudes  within a 
predetermined desired agreement (in analogy with the Jayatilaka technique33-40). In other words, 
it is necessary to look for those Extremely Localized Molecular Orbitals that minimize the 
following functional: 

 
where  is the energy associated with the ELMO wavefunction for the reference crystal unit, 

 is an external adjustable parameter that is varied during the calculations and that represents 
the strength of the external constraint,  is the measure of the statistical agreement between 
calculated and experimental structure factor amplitudes,  is the desired agreement (typically 
fixed to 1.0), and stresses the functional dependence on the occupied ELMOs. In particular, 

 is expressed like this: 
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with  as the number of collected X-ray diffraction data,  as the number of adjustable 
parameters (in this case only the external multiplier ),  as the triad of Miller indices labeling 
the reflection,  as the standard uncertainty corresponding to each observed structure factor 
amplitude  and  as a scale factor that is properly determined in order to minimize . 
Through a quite simple mathematical derivation46,47 it was possible to show that the 
minimization of functional (3) is equivalent to solving self-consistently a new set of equations 
that are substantially the equations proposed by Stoll et al. for the original ELMO method15 (see 
equation (1)), but with the modified Fock operators for the different fragments containing two 
additional terms that take into account the effect of the experimental data:46,47  

 
with 

 
and  and  respectively as real and imaginary parts of the structure factor operator  
defined like this: 

 
where  is the reciprocal lattice matrix and  is the number of unit-cell equivalent positions, 
which are related to the reference one through the crystal symmetry operations   
The strategy has been properly tested by performing calculations that exploited both high- and 
low-quality crystallographic data and that used sets of atomic basis functions of different size 
and qualities.46-48 It mainly emerged that the determination of X-ray constrained ELMOs is really 
straightforward. Nevertheless, as already observed for the original XCW technique, good 
statistical agreements with the experimental X-ray diffraction measurements are reached 
provided that high-quality crystallographic data and sufficiently flexible basis-sets are used. 
From the preliminary tests it was also observed that the X-ray constrained procedure entails 
significant redistributions of the electronic charges both in the valence and in the core regions. 
In a more recent study,49 the capabilities of the new XC-ELMO approach have been also assessed 
by comparing the results of corresponding X-ray constrained Hartree-Fock (XC-HF) and X-ray 
constrained ELMO calculations. This enabled to study in detail the effects of introducing an a 
priori localization of Molecular Orbitals in the framework of Jayatilaka’s XCW approach. It was 
observed that, if small basis-sets are used in the calculations, the MOs localization has indeed a 
strong influence on the final electron density. Nevertheless, employing larger sets of basis 
functions, the XC-HF and the XC-ELMO techniques tend to provide more similar results. This 
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can be explained considering that the flexibility of larger basis-sets allows to increasingly exploit 
the information provided by the experimental data and, consequently, to gradually mitigate the 
initial bias imposed on the electronic structure by a pre-defined localization. Therefore, when 
adequate basis-sets are used, the introduction of a localization scheme represents a less severe 
approximation and, at the same time, it enables to directly include traditional chemical concepts 
in the X-ray constrained wavefunctions. 

2.B The X-ray constrained ELMO-Valence Bond method 
All the current versions of the XCW approach are based on a single Slater determinant 
wavefunction ansatz.  However, in order to determine the weights of different resonance 
structures in molecular systems characterized by a multi-reference character, it has been 
recently developed the X-ray constrained ELMO-Valence Bond (XC-ELMO-VB) method.50  
Unlike the usual X-ray constrained wavefunction strategies, in the XC-ELMO-VB technique 
each crystal unit wavefunction is written in the following form: 

 
where the functions   are single Slater determinants that describe all the possible 
resonance structures of the system in exam. In this case, they consist in ELMO wavefunctions 
that are pre-determined by means of unconstrained ELMO calculations based on localization 
schemes corresponding to the different resonance structures. For example, if one were interested 

in studying the benzene molecule, the wavefunction   would be a linear 
combination i) of the ELMO wavefunction corresponding to the localization scheme for 
resonance structure A and ii) of the ELMO wavefunction associated with the localization scheme 
for resonance structure B (see Figure 4). 

 

Figure 4. Resonance structures of benzene 

In the current version of the method,50,51 the pre-optimized ELMOs are kept frozen, while the 
coefficients in equation (8) are determined by minimizing the following functional: 

  
where  is the energy of the system associated with wavefunction (8),  and  have the same 

meaning seen in equation (3)  and  indicates the functional dependence of ,  and  on the 
coefficient of expansion (8). 
For the sake of completeness, it is important to note that, due to the non-orthogonality of the 
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Slater determinants  , the coefficients  do not immediately provide the real weights 
associated with the corresponding resonance structures. These weights are actually given by the 
Chirgwin-Coulson coefficients52 defined as: 

 
with   as the overlap between the ELMO wavefunctions   and  . 
Preliminary test calculations have been initially performed to determine the weights of the 
resonance structures of naphthalene at different temperatures by exploiting experimental high-
resolution X-ray diffraction data.50 The obtained results have interestingly shown that the 
explicit consideration of experimental structure factors in the determination of the resonance 
structure weights may lead to results different from those resulting only from the simple energy 
minimization. 
Moreover, the novel XC-ELMO-VB strategy has been more interestingly applied51 to further 
interpret the results of a recent charge density study on the syn-1,6:8-13-biscabonyl[14]annulene 
(BCA) molecule (see Figure 5) conducted by Macchi and coworkers.53 By performing X-ray 
diffraction measurements at ambient and high pressures, they have observed a partial 
suppression of aromaticity when pressure increases. 

 

Figure 5. Resonance structures of BCA. 

By means of XC-ELMO-VB calculations that exploited crystallographic data (i.e., atomic 
positions, Anisotropic Displacement Parameters (ADPs) and structure factor amplitudes) 
collected at different pressures, it has been observed that, while at ambient pressure resonance 
structures A and B of BCA (see Figure 5) are almost equivalent (i.e., they have almost the same 
Chirgwin-Coulson coefficients), at high pressures, resonance structure A becomes 
predominant,51 confirming the partial rupture of aromaticity experimentally observed by Casati 
et al.53

Notwithstanding the encouraging preliminary results, the XC-ELMO-VB strategy represents 
only the starting point for the development of a new many-determinant X-ray constrained 
wavefunction method. The next step will consist in also optimizing the ELMO wavefunctions  

 in expansion (8) through the minimization of functional  
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3. ELMO-libraries to refine crystallographic structures of macromolecules 
As already mentioned in the introduction, due to their strict localization, the ELMOs can be also 
exploited as elementary, electronic LEGO-building blocks that can be transferred from molecule 
to molecule. 
In this context, after rigorous preliminary tests on the ELMOs transferability,31,32 ELMO-libraries 
that cover all the possible fragments of the twenty natural amino acids in all their possible 
protonation states have been recently constructed.41 The ELMOs in the databanks are generally 
localized on one-atom and two-atom subunits. However, to properly describe situations in 
which the delocalized nature of the electronic structure is important (e.g., peptide bonds, 
aromatic rings, carboxylate groups), ELMOs localized on proper three-atom subunits have also 
been determined and stored (see Figure 6). 

 

Figure 6. Three-atom fragments used to describe (A) σ and π electrons of the carboxylate groups, (B) the electrons 
involved in the peptide bonds and (C) the delocalized π electron pairs of the aromatic rings. 

To make the ELMO transfer from the libraries to the target structures more and more automatic 
and fast, a new efficient program has been written. It allows to instantaneously obtain 
approximate wavefunctions and/or electron densities of very large macromolecules and 
represents the real starting point for future developments of novel linear scaling ELMO-based 
strategies aiming at refining high-resolution crystallographic structures of polypeptides and, 
above all, proteins (see below the very recent coupling of the ELMO-libraries with the Hirshfeld 
Atom Refinement). 
Preliminary test calculations exploiting the ELMO-libraries and the associated program have 
been already carried out. At first the focus was on the scalability of the ELMOs transfer and, by 
considering sets of poly-glycines and poly-tryptophans of increasing size, it has been observed 
that the transfer of ELMOs from the databanks to the target systems is really instantaneous. Of 
course, the new libraries have been already applied to real proteins, as the antifreeze protein RD1 
(PDB code: 1UCS, 64 residues and 997 atoms) and the PEX14 N-terminal domain (PDB code: 
5L87, 62 residues and 1019 atoms). For all the considered systems, the new ELMO-libraries and 
the associated program have allowed to successfully and rapidly compute (e.g., 193.71 seconds 
for the antifreeze protein RD1) the corresponding electron densities and electrostatic potentials 
(see Figure 7). 
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Figure 7. (A) Electron density (0.001 e/bohr3 isosurface) and (B) electrostatic potential (plotted on the 0.001 e/bohr3 
electron density isosurface) for the antifreeze protein RD1, both of them obtained from the transfer of Extremely 
Localized Molecular Orbitals from the recently constructed ELMO-libraries (basis-set 6-31G). 

Considering the reliable transferability of the ELMOs and the efficiency (in terms of CPU time) 
with which the new libraries of Extremely Localized Molecular Orbitals are able to reconstruct 
electron densities of very large systems, the possibility of using the new databanks to refine 
protein crystallographic structures has been already explored. In particular, the ELMO-databases 
have been recently coupled with the promising Hirshfeld Atom Refinement (HAR),42-45 thus 
extending the applicability of the latter also to macromolecules.54 

In fact, HAR is a technique that requires a tailor-made quantum mechanical calculation at each 
step of the refinement and its computational cost unavoidably increases with the size of the 
systems under exam. It is thus clear that, in its original version, HAR cannot be straightforwardly 
extended to large molecules. The only way to do that is to couple it with linear-scaling methods 
of quantum chemistry and this is the reason why HAR has been coupled with the new ELMO-
libraries. Although, at the moment, preliminary refinements have been carried out only on 
crystals of small systems (e.g., dipeptide Gly-Ala), it has been already observed that the new 
HAR-ELMO technique provides results practically identical to those obtained by means of the 
traditional HAR method.54 

4. Conclusions 
This lecture is a general overview on the concept of Extremely Localized Molecular Orbitals and 
on their current use in quantum crystallography. The main message is that, due to their extreme 
localization and their intrinsic closeness to the traditional chemical perception, ELMOs can be 
properly exploited i) both to enhance the chemical interpretability of the obtained X-ray 
constrained wavefunctions (see XC-ELMO and XC-ELMO-VB methods discussed in section 2) 
ii) and to develop new quantum mechanics-based linear-scaling techniques to refine 
crystallographic structure of macromolecules (see the ELMO-libraries and the new HAR-ELMO 
method discussed in section 3). 
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Introduction 
Hirshfeld atom refinement (HAR) [1, 2] is an advanced approach to X-ray crystal structure 
refinement. It is a post-IAM (IAM = Independent Atom Model) refinement procedure. HAR is 
available with the program Tonto (and its terminal version HARt, interfaced to Olex2).  
In HAR, the atomic electron densities (ED) used to model the crystal ED during the refinement 
procedure are NOT spherical as in the IAM. Instead, they are deformed to account for 
aspherical effects, e.g. caused by bonding. They are calculated from the best reasonably 
achievable ab-initio quantum mechanical calculations (which relies on a choice of method and 
basis set). 
The steps involved in HAR are: 
1 - A theoretical single-point calculation provides the molecular electron-density distribution. 
2 - This electron density undergoes  
(i) a stockholder partitioning according to Hirshfeld [3, 4] to obtain the aspherical atomic 
electron densities which will then be  
(ii) thermally smeared (by the convolution with the probability density function) and 
(iii) Fourier transformed to provide tailor-made aspherical atomic scattering factors for the 
molecule being studied.  

 
3 - A full-matrix least-squares refinement of the parameters is then performed using the 
aspherical scattering factors in order to reproduce the observed X-ray diffraction data.  
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These steps are repeated until full convergence is achieved (in energy and geometry). 
Since the wavefunction calculated in the energy computation in Tonto is based on an isolated 
molecule, the influence of the environment (or crystal effects) would not be reflected in the 
molecular electron density. Therefore, self-consistent atomic charges and dipoles of the 
Hirshfeld atoms are calculated and used to surround the isolated molecule for which the 
wavefunction is calculated to simulate a crystalline environment. The simulation of such effects 
by point charges and dipoles might be insufficient, e.g. for situations with strong hydrogen 
bonding, for such cases a more exhaustive treatment which explicitly includes the molecules 
involved in the strong interactions should be used. 
Charges are placed on all complete molecules which have at least one atom within a specified 
distance of the central molecule. Complete molecules should be used, to avoid charged species 
and therefore minimize errors in slowly converging potential sums, but the option to use non-
complete molecules is now available1 and it is useful when dealing with network compounds. 
It has been shown that including a surrounding cluster of charges is more important than using a 
large basis set,[2] and results for hydrogen atoms that are comparable to those obtained from 
neutron diffraction experiments might be achieved.[5, 6] When using HF/def2-SVP not 
including a self-consistent field of cluster charges surrounding the main molecule, this setting is 
called the “minimal HAR” [5] and is a good starting point. 

Important facts: 
1 - In the current version of Tonto, all hkl files must be merged and pruned of systematic 
absences. If you use HARt inside Olex2, this step is executed automatically by Olex2 with the use 
of cctbx. 
2 - Since HAR is subjected to a theoretical single-point calculation for extraction of aspherical 
scattering factors, for structures with Z’ < 1 the input geometry in the CIF must be modified in 
order to include one “full molecule” and/or “strong interactions” that might affect the ED. 
3 - During the SCF computation in Tonto, all linear dependencies in the least-squares matrix are 
eliminated automatically, therefore no restrains or constraints are implemented in the program. 
This might cause problems in the case of spherical ions. To overcome this problem, we have 
created a script (lamaGOET – see below) that is able to perform a HAR (iteratively as the 
original HAR within Tonto) using different softwares for the SCF calculation (step 1), such as 
Gaussian, Orca2, the original Tonto or the Elmo data base (by Alessandro Genoni). The 
lamaGOET script also provides a graphical interface which facilitates the generation of Tonto 
input files including advanced options.  
 
 
 
1  This option was added by us in the Tonto code in Dec 4, 2017 (commit fe66cc2), and therefore does not work with earlier versions of 
Tonto. 
2  The implementation with Orca is still not fully finalized since the current version of Tonto still cannot handle spherical basis-sets. 
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Instruction for HAR Workshop: 

HARt in Olex2: 
To perform HAR three files are needed: 

1. CIF, containing the geometry of the structure to be refined 
2. hkl file, containing all reflections measured 
3. A basis set file, containing the coefficients for all atoms in your structure (default basis 

sets are provided with the program) 
The most convenient way to get a HAR of your structure is through the Olex2 interface. For this 
purpose, you will need to install Olex2 from the website http://www.olexsys.org/. An 
.ins/.res/.cif-file can easily be loaded into Olex2 and the dropdown for HAR can be used to 
configure your HAR: 
A structure can be either loaded by drag-and-drop of the corresponding structure file into the 
Olex2 window or using the File->Open dropdown menu. Now load the provided example of 
epoxide in the folder input/epoxide_olex or choose it in Olex2. 

 

Figure 1. 

When the structure is loaded and your IAM model is finished and converged (Shift turns green), 
you can go to Tools and open the HARt dropdown menu. A set of default options will be 
preconfigured. The recommendation for “Minimal HAR” is a level of theory of HF/def2-SVP 
without cluster charges or any other advanced setting, but anisotropic hydrogen treatment. Hit 
„Start HAR” and a window will open, where the output of the calculation is printed. This 
window must not be closed since it is linked with the calculation. When the calculation is 
finished you will see a massage like this: 
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Figure 2. 

If you now press a button, this window, if activated, will close. A line will be added to your job 
list, which looks like this: 

 

Figure 3. 

While a job is running, you can watch its progress if you press „Check Output”. If you press 
„Check Output” after the first cycle of refinement, the name of the job will turn into a button. If 
you click on it, the preliminary results will be loaded. Keep in mind that these are just 
preliminary, the final geometry might still be different. When the calculation finishes, the line 
will change to: 

 

Figure 4. 

If you click on „Finished” the output file will be opened, and you can browse through it. The 
button „Epoxide“ opens the final structure. If you want to go back to the model before HAR the 

button will take you back.  
If you have plotly installed for python in Olex2 (needs to be installed separately) you can click on 
the analysis „Open” link and it will open a tab in your browser showing interactive fitting-quality 
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plots. If you don’t have it installed, the text file containing this information will be shown. If you 
want to remove a folder from your hard disk, hit „X“. If you want to browse through your files, 
you can use the link „(View all jobs)” to open the folder containing all files from HAR runs. If you 
finished a calculation, the results will also be copied back into the folder where you started it. If 
you started it e.g. in D:\epoxide\ with a file epoxide.cif, the results will be called 
epoxide_HAR.cif. There is the .cif file containing the geometry, the .out file containing all output 
during the calculation and the .fcf and .fco files.  
In cases where Z’ < 1, Olex2 will try to grow your structure. In the examples folder 
input/nh3_olex, you will find a dataset for NH3 which has only three atoms partially in the 
asymmetric unit. Using the tickbox „Auto-Grow” you can select whether Olex2 will try to grow 
your structure automatically. This works in most of the cases for molecular compounds such as 
NH3, rubrene etc. If you hit „Start HAR” the molecule will be completed, and the refinement 
started. After a few seconds you will see the „Finished” message and can close the window with 
any key. If needed, hit „Check Output“ and load the resulting cif. If you want to see the full 
structure you can use the toolbox provided on the bottom part of the HARt dropdown or use the 
default commands in Olex2 like “grow” or “pack”. 
If you have a structure you need grow in a special, e.g. non-molecular, way the growing mode in 
Olex2 can be useful. Open the oxalate example and have a look at the hydrogen atom. It is 
involved in a strong hydrogen bond to a neighboring oxalate anion. If the wavefunction 
calculated for HAR does not have the information about the neighboring atom, the bond will be 
described in a different way than the crystal structure shows. Therefore, it is necessary to include 
the neighboring anion. This can be easily done using the growing tools provided in the HAR 
Extras.  

 

Figure 5. 

Open them and select “Mode Grow” Short, as shown above. The structure will show all short 
contacts as dashed bonds. You can now click on the close contact of the hydrogen atom, and the 
second molecule will appear. Hit ESC to exit the growing mode. 
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Figure 6. 

If „Start HAR” is pressed now, the calculation will not start directly, a warning message is shown: 

 

Figure 7. 

If Yes is pressed, the calculation is started with both molecules for the wavefunction calculation, 
but only the asymmetric unit being refined in the least-squares. This will take longer than if only 
the asymmetric unit was considered, but the results are much more meaningful. 

Manually running HARt: 
If other features of HAR are needed, the executable hart(.exe) can be used. A full list of 
supported keywords can be obtained by typing: 

$ ./hart.exe –help 

A summary of information and a list of all possible keywords will be printed. 
The default values and syntax are shown. The least amount of keywords essential for HARt can 
be derived by the necessary information for HAR as follows: 

1. -shelx-f / -shelx-f2 <FILENAME.hkl> 
2. <FILENAME.cif> 

Everything else will be taken from default settings. The command needs to be executed in the 
folder containing the files or a full path will be needed for <FILENAME>. The output will be 
printed to <FILENAME.out> and basis sets will be taken from ./basis_sets. If you want to 
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explicitly specify the location of a basis set directory the keyword -basis-dir 
<path_to_basis_sets_folder> will be needed, but in this case all example folders contain a 
basis_sets folder. Now open a terminal (on windows run cmd.exe or windows power shell, use 
windows+r and type cmd.exe or use the dropdown in the explorer) and navigate to the examples 
folder provided. Navigate to input/nh3_hart and type (depending on your Operating System): 

> ..\hart.exe -shelx-f nh3.hkl nh3.cif   $ ../hart -shelx-f2 nh3.hkl nh3.cif 

The result files will be called nh3.archive.cif etc. You can open them using Olex2 or any other 
visualization tool you prefer. The result is identical to the one obtained by Olex2. However, if 
you want to have the most control over your calculation running HAR by calling tonto is the 
most sophisticated way.  

Running HAR in Tonto: 
Tonto is a program and library for quantum crystallography and quantum chemistry which 
allows you to: 
- Calculate wavefunctions using Hartree-Fock, DFT, two-component relativistic methods, and 
perform analysis such as Roby bond analysis and property density plots. 
- Refine crystal structures from structure factors using Hirshfeld atoms i.e. aspherical atomic 
scattering factors derived from ab initio wavefunctions. 
- Obtain experimental wavefunctions that are constrained to reproduce experimental diffraction 
data.  
Tonto is also used as the "back-end" to the popular CrystalExplorer visualization program. So 
performing HAR is only one of the features in Tonto. 
The tonto executable is not provided together with Olex2 (unlike HARt) and most ideally should 
be installed and compiled on your operating system. For this workshop static release versions are 
provided. 
To run HAR using the Tonto program itself, you will need to setup an extra file which is the 
input file for the Tonto job (stdin is the default name for this file). Using Tonto for the 
calculations allows access to several extra features compared to the terminal version HARt. 
A good way to start with an input file is to copy one of the stdin files which already exist in the 
tests folder. Choose one which closely matches your type of job and modify it, but for this 
exercises an input file is provided in the input/epoxide_tonto folder.  
The stdin input file always starts and ends with matching curly brackets, and it should contain 
instructions matching the hierarchy of Tonto.  
The information regarding the format of your hkl file has to be added as well, this time with a 
header inside the hkl file instead of giving the format outside like in the HARt example. 
Inside the folder input/epoxide provided, you will find the following files: 

‐ epoxide.cif 
‐ epoxide_with_header.hkl 
‐ stdin 
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The .cif-file is identical to the ones used before in the previous examples, but the hkl file now 
includes a header to identify the columns in the hkl file.  
The stdin contains all information needed for the refinement and all extra features of tonto are 
available through this file. The calculation is started with: 

> ..\tonto.exe 

A full list of all keywords available for each block in tonto can be printed in the stdout file by 
mistyping something inside the corresponding block in the stdin. There is a great number of 
keywords and inputs option for tonto that will be discussed but not explained explicitly here. 

Running HAR in Tonto through the lamaGOET graphical interface, and extra options 
interfacing Tonto to different softwares: 

 

Figure 8. 
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Figure 1 shows a preview of the lamaGOET graphic interface where the numbers in red are:  
1- Option to select different softwares for the single-point calculation. 
2- Select the Tonto basis-set directory from the Tonto installation folder in your PC. 
3- Job name which will be the new data block name in the resulting CIF and also in every file for 
the current refinement. 
4- Option to be used in case of Z’ < 1 to automatically complete the molecule in the asymmetric 
unit. Do not use if you have a network compound! 
5- Option to automatically include the header required by Tonto in the reflection file (if you try 
to insert the header in a file that already contains it, the software will automatically ignore the 
request). 
6- All basis sets available in Tonto are listed in a drop-down menu, but if you wish to use 
Gaussian for the energy calculation you need to enter the basis-set name manually in the 
Gaussian format. 
7- Option to use self-consistent cluster charges during the calculation of the wavefunction. Point 
charges are calculated by Tonto from Hirshfeld partitioning, which is independent of the 
software chosen for the wavefunction calculation. 
8- Refinement options. 
9- Option to perform an IAM pre-refinement before HAR. 
10- Option to refine or not refine the H positions. This option did not exist in Tonto until Dec 4, 
2017. 
11- Option to elongate X-H distances for all H atoms in the structure (independent of the 
hybridization state of the atom which it is bonded to). 
12- Option to add dispersion corrections into the calculated structure factors. If set to yes, a 
popup window will be shown after pressing the OK button to enter f’ and f” coefficients for each 
element that you wish to use the correction for. It is not required to enter these values for every 
element in the structure. 
The script can be downloaded free of charge, for registered users, at 
https://sites.google.com/site/malaspinala/home/softwares. 
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The modern quantum chemical methods enable accurate calculations of molecular and crystal 
wavefunctions and, using response theory, of electronic properties.  
However, for materials design, the periodic calculations are too expensive to allow screening 
structures that may offer the desired properties. For this reason, a simplification would be 
appreciated of a crystal in terms of building blocks, the assembling of which may return 
approximate properties, evaluated very rapidly. The building blocks may be molecules in a 
molecular crystal, isomeric unit of a polymer or even functional groups of any molecular base 
material (being polymeric or not). In fact, the concept of functional group is central in chemistry, 
adopted also to design molecules for, for example, drugs, pigments, chromophores, etc. 
The optical, electric, magnetic or mechanical properties can be simplified in terms of a sum of 
functional group properties. This would enable for example, they consist of; ultimately, just one 
or a few functional groups might be enough to explain a molecular or crystal property, an 
important aspect for retro-designing new materials (reverse crystal engineering). The hypothesis 
is that functional groups retain their properties although embedded in different molecules 
(Hammet, 1937), at heart of the concept of transferability (Bader et al., 1987; Bader et al. 1992).  
This approximation clearly neglects that the properties of a functional group depend also on the 
chemical environment, which perturbs the electron density of the functional group. We may 
distinguish through-bond and through-space perturbation, depending on conjugative effects or 
polarization induced by the electric field, respectively. The electric field due to the surrounding 
molecules in a crystal, despite being of the order of magnitude of GV/m, is much smaller than 
that of an intra-molecular field, thus, changing some substituents in a molecule is much more 
perturbative than changing the surrounding of a molecule.  
In this lecture, the focus is on dielectric properties of materials that mainly depend on the 
electronic polarizability, in particular the first-order polarizability (i.e. the linear perturbation of 
the electron density distribution due to an electric field). The electronic polarizability is 
responsible for the optoelectronic properties of a material, like refractive index. A good 
rationalization of the key features that affect the polarizability allows one to design new materials 
with targeted applications, like high refractive index (HRI) materials are desirable for lenses, 
optical waveguides (Matsuda et al. 2000), high light extraction efficiency in LED components (Ju 
et al. 2006) lower dielectric constants for the insulation of wires (Hatton et al. 2006). 
So far, the material design is based on empirically desumed building block properties. For 
example, aromatic rings, heteroatoms like sulphur, or halogen atoms were used to enhance 
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refractive indices. However, these trial & error attempts are time consuming, and do not allow 
the most efficient material design.  
A rapid estimation of at least approximate values of dielectric constant of a molecular-based 
crystalline material is desirable to screen a much wider class of compound, without resorting on 
many measurements (not to mention the need itself of producing the material in adequate 
amount and form, which may be itself challenging). 
An additional problem is calculating the materials properties with a sufficiently accurate 
theoretical method, going certainly beyond Hartree-Fock approximations (Champagne & 
Bishop, 2033). High correlation level is necessary to correctly represent local and non-local 
effects perturbing a functional group. However, correlated calculations with periodic boundary 
conditions are impossible. A possible solution is the partitioning that enables calculation at high 
level on a small fragment, which may recover the through-bond effects, whereas the through 
space interactions are simulated with semi-classical approaches. For this reason, a partition of 
the material in functional groups may be preferable with respect to computation of the 
polarizability of the entire system.  
Thus, a database of functional groups may simultaneously guarantee the requested accuracy and 
low computational costs. A database of polarizabilities, and a protocol for the calculation of the 
atomic polarizabilities has been recently proposed, see Ernst et al. (2018). 

Theoretical Background 
As it is well known, a molecule in an electric field polarizes its charge density (in terms of both 
electron distribution and nuclear configuration). The (hyper)polarizabilities correlate the applied 
electric field and the perturbed electron density (Griffiths, 2008). In particular, the dipolar 
polarization (i.e. the induced change of dipole moment) is linearly dependent on the field, 
mediated by the first polarizability α:  

 

 induced =μ αE (1)  
 

where α is a tensor and E is the vector field. Measurements, like the refraction in solution, enable 
determination of the isotropic value of the molecular polarizability), whereas more complicated 
is the measurement of individual components of the tensor. 
In fact, for a linear, homogenous and linearly respondent dielectric, the Clausius-Mossotti 
equation holds true: 
 

 
2

2
1 1 4
2 32

r

r

n N
Vn

ε π α
ε
− −

= =
+ +

 (2) 

 



158 Erice International School of Crystallography • 52nd Course, 1-10 June 2018

where εr is the relative dielectric constant, n  is the refractive index, and N is the number of 
molecules in the volume V. From equation (2), Pauling (1927) proposed the so-called molar 
refraction R 
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adopted even to determine the screening constants for atomic orbitals. 
Many semi-empirical databases of atomic or group polarizabilities have been proposed, based on 
assumptions and using measurements like the refractive index.  
Vogel (1948) reported on a database of isotropic polarizabilities for isolated atoms and functional 
groups using additivity schemes. Based on this scheme, Applequist (1976) proposed a non-
additive model taking into account the induced dipole moments, thus introducing an anisotropy. 
Miller (1990) used the so-called atomic hybrid components, which takes into account the local 
hybridization of an atom, obtained by fitting to experimental data. Kassimi & Takkar (2009) 
introduced the concept of fragments in the calculation of organic molecules.  
Stout & Dykstra (1995) developed a database of anisotropic polarizabilities obtained by fitting 
calculated molecular components.  
One of the most important schemes was introduced by Stone (1985) who derived distributed 
atomic polarizabilities from distributed multipole expansion of the molecular charge density 
(Stone, 1981; Stone & Alderton, 1985; Le Sueur & Stone, 1994).  
An important question is whether other experimental methods than molar refraction from 
solution can provide an experimental estimation of the molecular polarizabilities, in particular 
whether X-ray scattering. Ivanov-Smolenskii, Tsirelson & Ozerov (1983) proposed to compute 
the polarizabilities of ions from X-ray diffraction, but the most comprehensive work linking X-
ray diffraction and molecular polarizability was that by Whitten, Spackman & Jayatilaka (2006). 
They pointed out that the one-electron density is not sufficient to calculate molecular 
polarizabilities, whereas the molecular orbitals from X-ray constrained wavefunction, with 
appropriate approximation, enable the estimation of molecular polarizabilities.  
Another important question for the discussion in this lecture is the additivity of atomic / group 
polarizabilities (or electrostatic properties in general). Bader et al. (1992) demonstrated the 
additivity of group polarizabilities for acyclic hydrocarbons and rationalized it based on the 
partitioning of the electron density with the Quantum Theory of Atoms in Molecules (QTAIM). 
The scheme was further developed by Keith (2007) with a distribution of atomic dipole moments 
that solves (or better tackles) the origin dependence problem of dipole moment of non-neutral 
subunits of a molecule (like in fact atoms or functional groups). Keith’s approach was further 
improved in the software PolaBer, which allows the calculation of full polarizability tensors for 
atoms and functional groups in isolated molecules or crystals (Krawczuk, Perez & Macchi, 2014) 
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and Dos Santos, Krawczuk & Macchi (2015) tested it on a series of amino acids in isolation or in 
aggregation. Moreover, this work paved the way for the compilation of a functional group 
database (Ernst et al., 2018).  

Distributed atomic polarizabilities 
The molecular or crystal polarizability can be calculated by double derivative of the electronic 
energy with respect to the field, or by the first derivative of the dipole moment.  
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where E is the molecular energy and εi is a component of the electric field. Because of the 
symmetry of the second derivative, the polarizability tensor must be symmetric (thus ij jiα α= ).  
Although the analytical differentiation is possible, often calculations make use of the finite field 
approach and the dipole moment is differentiated numerically.  
For a calculation of atomic contributions, one can use a hard space partition (like Bader’s) a 
fuzzy space partition (like for example Hirshfeld’s) or a Hilber space partition. The hard space 
partition of the QTAIM is problematic because itself field dependent even for fixed nuclear 
geometries. 
By adopting a finite field approach, the dipole moments of an atomic basins Ω are calculated and 
differentiated. It is interesting that the atomic dipole moments μ(Ω) consists of two terms: the 
atomic polarization μP(Ω) (i.e., the charge shift within the atomic basin) and the charge 
translation μC(Ω) (i.e. the shift from one basin into another).  
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In equation (5), RΩ  is the position vector of the nucleus Ω ; R0  is the origin of the molecular 
coordinate system (arbitrarily chosen). If the atomic basin is not neutral, μC(Ω) does not vanish 
and is origin dependent. This may be a serious issue for transferability of an electrostatic 
property of an atom or a functional group in a molecule, given that they may not be neutral. 
Keith (2007) overcomes this problem transforming the charge-translation component into a 
basin-to-basin summation: 
 

 ( ) ( )( ) ( ) ( ) ( ) ( | ') ( | ')
BCP

P C BCP
n

d qμ μ μ ρΩ Ω
Ω

Ω = Ω + Ω =− − + − Ω Ω Ω Ω∑∫ r R r r R R  



160 Erice International School of Crystallography • 52nd Course, 1-10 June 2018

( | ')q Ω Ω  is the charge transferred to the atomic basin  Ω  from the bonded atom Ω’ and RBCP is 
the positional vector of the bond critical point between atoms  Ω  and Ω’. Noteworthy, equation 
(5) is valid whatsoever definition of bond one adopts, not necessarily that of the QTAIM.  
It follows that the atomic polarizabilities can by calculated as: 
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If the space partition is an exact partition then the molecular polarizability is exactly 
reconstructed. However, because of the possible asymmetry of the atomic volume, the atomic 
polarizability is not symmetric, although the asymmetric components cancel each other when 
summing over all atoms. For this reason, a symmetrization of the atomic polaritabilities, 
according to the classical scheme by Nye (1985), one can remove the asymmetry of each atomic 
component, without affecting the total polarizability. Moreover, while the total molecular 
polarizability must be a positive definite tensor, the atomic polarizabilities must not. However, a 
negative atomic tensor may incidentally occur only for hydrogen atoms, especially when 
involved in strong hydrogen bonds and associated with a very low electronic population.  
From equation (7) it immediately follows the possibility of computing functional group 
polarizabilities by adding atomic terms, as it was propose by Ersnt et al. (2018).  

Dielectric properties from distributed atomic polarizabilities 
One of the main applications of distributed atomic polarizabilities is the estimation of crystal 
optical properties, like dielectric constant:  
 

 
4

1 1crystal

V
π

= + = +r
α

ε χ  (8) 

 
There are different approaches, once a molecular polarizability is known (either from a direct ab 
initio calculation or from a database reconstruction).  
A very crude approximation if the crystal polarizability is the simple sum of unperturbed 
molecular polarizabilities (which could be further decomposed in the sum of unperturbed 
atomic polarizabilities): 
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Equation (9), however, does not take into account the enhancement of the polarizability in the 
field generated by other molecules. Within the classical electrostatics, this enhancement can be 
estimated by including the local field generated at a molecular / atomic site by the permanent 
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and induced dipole moments of the other molecules in the crystals (or atoms). Assuming the 
crystal an ideal, hence infinite, crystal, this calculation requires the Lorentz tensor L, following 
the suggestion by Dunmur (1972) and Cummins, Dunmur & Munn (1976):    
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where k, k’ are lattice points of the ideal lattice. While the original definition was meaningful for 
an ideally homogeneous molecule occupying a lattice point of the crystal, Bounds & Munn 
(1977) have proposed a molecule as a collection itself of different sites (for example 6 sites in a 
benzene molecules), which turned out to be more accurate. Indeed, as shown by Krawczuk, 
Perez & Macchi (2014), this is suitable also for the case of distributed atomic polarizabilities.  
Bounds & Munn (1977) suggested to "distribute" the molecular polarizability of the central 
molecule on different sites, thus enabling a more accurate description. However, the distribution 
proposed was a simple equi-partition of the molecular tensor on some atomic sites, whereas it is 
clear from our examples that the atomic polarizabilities are quite diverse and this approach, 
albeit more precise than a central polarizability approach, may not be sufficiently accurate. 
Having, instead, the exact atomic polarizabilities, it is possible to perform the calculation with 
much more precision, using the same formalism of Bounds & Munn (1977).  
The possibility of extracting the distributed polarizabilities, though, enables also additional 
treatments like for example the calculation of a molecule in the first coordination sphere, to 
account ab initio of the short intermolecular effects, and the subsequent calculation of Lorentz 
tensor, excluding the first coordination sphere. This provides an even better model, closer to the 
physical realm.  
In all these approaches, anyway, a recursive calculation is necessary, given that the 
polarizabilities of the molecules at the lattice points is changing and therefore needs to be 
updated in a second cycle of calculations until convergence is reached. 
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A pillar of the emerging field of quantum crystallography is represented by the group of methods 
aiming at analyzing the chemical information contained in experimental and theoretical static 
electron density distributions.  
The interest of this area of research is to focus on a classical concept that is extremely useful to 
understand and predict solid state behavior. As defined by Linus Pauling, “Chemistry is the 
science of substances: their structure, their properties, and the reactions that change them into 
other substances” [1]. The first two aspects, structure and properties, are clearly associated to the 
arrangement of atoms in a molecule, i.e., the chemical bond. These bonds determine chemical 
reactivity —the third aspect— and their visualization allows chemists to understand how atoms 
or molecules bond at a most fundamental level. A mechanistic understanding of chemical and 
biological functions and the structures of solid materials depends on knowing the geometric 
structures and the nature of bonds. But, despite the fact that the chemical bond is a fundamental 
concept in chemistry, “what is a chemical bond?” still remains a critical question for the chemical 
community because of the lack of a unique definition and inadequate understanding of its 
physical nature. 
Visualization of bonding interactions between atoms and molecules is a long-standing quest in 
theoretical and computational chemistry. In recent years, it has become possible for most 
chemists to calculate molecular structures and stabilities based on quantum chemistry 
approaches. The main interest lies in creating a tool that enables researchers to see the 
interactions, and also interpret their characters and properties. Successful numerical solution of 
the Schrödinger equation yields energies and properties of atoms and molecules, but not directly 
a clear physical explanation of chemical bonding.  

Theoretical framework 
Several approaches have been developed to reveal the microscopic electronic natures of solids. 
Quantum Chemical Topology (QCT) does so by analyzing local functions, f, which yield a 
chemical picture of the system: 

 
Generally, two different approaches are taken to analyze these functions: 

• Local: it corresponds to the typical approach where the shape of a function is analyzed 
by looking at its maxima, minima,etc. In 3D, this means analyzing the points where the 
gradient of the function becomes zero (i.e. the critical points). There are 3 types of 
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critical points in 3D: maxima, minima, first order saddle points (maxima in 2 directions, 
minimal in 1) and second order saddle points (maximal in 1 direction, minima in 2). 
Their position and the value of f at these points helps understand the chemistry of the 
system. 

• Global: the system is divided following surfaces of zero gradient. Taking a 2D example 
like in the Figure 1, the picture can be divided into two regions associated to the 
mountains.  

 

Figure 1. a) Island b) local information: Identification of the orography critical points c) global information: surface of 
each region induced by a topological partition. 

As can be seen in Figure 1, this partition is exhaustive and non-overlapping. Hence, the sum of 
the different parts recovers the system (e.g. surface total of the island=96 km2).  
But how is this related to chemistry? The functions used need to have a chemical meaning. In 
what follows, we will see several examples of local functions which deliver different information 
on the system. 

1. The electron density 
The analysis of the topology of the electron density was introduced by Bader and collaborators in 
what is known as Quantum Theory of Atoms in Molecules (QTAIM) [2]. 
The electron density shows cusps (which can be associated with maxima). The first order saddle 
points (maxima in 2 directions, minimal in 1) are then associated with the presence of bonds in 
between pairs of atoms. This is why these critical points are also known as bond critical points 
(bcps) [3]. The position of the maxima (atoms) and bcps (bonds) thus enables to reconstruct the 
chemical graph of the molecule from calculated or experimental data. Figure 2 shows how this 
can be used to obtain the chemical graph of benzene. It has also enabled to solve controversial 
situations, such as the existence of a B-B bond in BB2H6. 
Since the partition we are using associated regions with the maxima, the final regions are 
associated with the nuclei. Hence, this partition enables to recover atomic regions. If we then 
integrate properties within these regions, we can obtain atomic regions. In this way, we can 
obtain atomic volumes and charges, which due to the properties of the partition, are additive and 
recover the system value. The transferability of these properties has enabled to recover the 
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transferability of functional groups. 

 

Figure 2. Scheme for obtaining the chemical graph of benzene from the electron density. 

2. The Electron Localization Function 
Another important set of f functions are those for the analysis of electron pairing, such as the 
electron density Laplacian,[4] the Electron Localization Function (ELF)[] and the Electron 
Localizability Indicator (ELI).[6]   
The core of ELF,  , can be understood as the Pauli kinetic energy density, tP,scaled by the electron 
density,  , so that it does not depend on the region of the molecule (the core has a much greater 
density). 

 
Then it is scaled to run from 0 to 1: 

 
So that it shows maxima in the regions of electron pair localization. Hence, its maxima recover 
the Lewis structure: atomic shells, bonds and lone pairs. See Figure 3 with the ELF function for 
the water molecule: it shows the O-H bonds and the oxygen lone pairs. 

 

Figure 3. ELF picture of the water molecule. 
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The integration over these regions provides volumes for bonds and lone pairs. This analysis 
allows for example to rationalize the formation of channels in MOFs, clathrates or molecular 
crystals [7]. It is important to note that the ELF and ELI require the first-order density matrix, so 
that quantum crystallography developments also hold great potential for these analyses. 

3. The reduced density gradient 
Due to their delocalized nature, special f functions have been designed to visualize non-covalent 
interactions. As an example, the reduced density gradient (aka NCI for Non Covalent 
Interactions)[8], has been designed to detect weak interactions such as halogen bonds from the 
electron density. It helps to provide more stable pictures that do not change upon the quality of 
X-ray refinement. The reduced density gradient, s, depends on the electron density and its 
gradient: 

 
It enables to visualize weak interactions, both attractive and repulsive. A continuous color-
coding is used where strong and attractive non-covalent interactions, such as hydrogen bonds, 
are represented in blue, van der Waals interactions in green and repulsive interactions (steric 
clashes) in red (see Figure 4). 

 

Figure 4. Non-covalent interactions in the adenine-thymine complex. Hydrogen Bonds in blue (2 intermolecular 
Hydrogen Bonds), steric clashes in red and dispersion in green. 

A comparative view 
In order to highlight the different chemical pictures provided by these functions, Figure xx 
shows the results for a benzene dimer extracted from the benzene crystal. QTAIM bcps reveal 
both covalent and intermolecular interactions in a benzene crystal. QTAIM, through 
integrations over atomic basins, yields atomic properties such as QTAIM charges (carbon and 
hydrogen charges, q, shown in Figure 5), atomic multipoles and volumes. The examination of 
BCPs provides insight into the structure and stability of crystals revealed in the bonding patterns 
that can be obtained from either theoretical or experimental electron densities. However, it is 
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not easy to differenciate the CH-C from the CH-  interaction within this approach. The 
delocalized nature of CH-  vs CH-C interactions becomes apparent when NCI is used. Finally, if 
we want to analyze the population of the bonding regions, and how they change upon the 
interaction, we need to analyze the ELF topology (Figure xx c). 

 

Figure 5. CH-  and CH-C interactions in benzene crystal a) Atoms in Molecules, b) NCI, c) ELF 

Applications 

High pressure 
Under pressure, properties of a material can get radically different from what they are at ambient 
pressure. For example, any material insulating at P = 1 atm is expected to turn metallic if 
submitted to a high enough pressure [9]. Maybe more appealing, unusual states of matter, such 
as superconductivity, can become quite common [10]. Concomitantly, the network of chemical 
bonds ensuring the cohesion of matter can get quite transformed as well as their very nature can 
change radically. As an example, weak intermolecular bonds that maintain together the 
molecules of a molecular solid can transform into strong “intramolecular” bonds under pressure, 
as the monomeric molecules that constitute the solid at low pressure polymerize into a 3D 
extended network of covalent bonds upon compression [11]. Typical examples are N2 and CO2  
which are well known to form molecular solids at ambient pressure and transform into 
polymeric structures where N and C atoms are 3- and 4-coordinated at high pressure, 
respectively. These new coordinations correspond to those of P and Si in solid P and solid SiO2 
at atmospheric pressure. This is an illustration of the 9th Prewitt and Downs’ rule of thumb 
which stipulates that elements behave at high pressures like the elements below them in the 
periodic table at lower pressures. Despite the establishment of many such rules, Hemley pointed 
out that “a fundamental yet empirically useful understanding of how pressure alters the 
chemistry of the elements is lacking”. Therefore, pursuing the effort to build solid foundations 
for our chemical intuition under pressure is essential and the tools that we will see can help 
thereto. 
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We will cast the ability of the above tools to describe two types of phase transitions: related to 
crystal packing (physical), and related to bonding changes (chemical). Within the former, the 
capacity of pressure to promote 
higher atomic coordinations in crystalline solids is one of its most outstanding features. This fact 
leads to densification processes of fundamental interest in areas ranging from planetary sciences 
to materials engineering. The electronic changes associated with a more effective atomic packing 
is an issue that needs to be addressed 
if a complete characterization of the densification process is desired. In addition, the phase 
transition may be accompanied by a change in the general bonding pattern of the solid. In this 
case, understanding the process of bond formation and rupture becomes of crucial interest.  

Property prediction 
Topology has been a great source of insight in the understanding of crystalline organization. 
However it lacks a fundamental characteristic: its use have been barely predictive. This is so due 
to the lack of a direct (known) link between electron density topology and energetics. One way to 
approach this gap is to build energy models relying on topology. We have explored using a 
potential energy surface that includes chemical quantities explicitly, so that properties provided 
are directly related to the inherent organization of electrons within the regions provided by 
topological analysis. We will see how a  very simple energetic model, the Bond Charge Model by 
Parr (BCM) [12], enables to describe the energetics of electron pairs. Coupling this to conceptual 
DFT, the band gap of solids can be univocally defined [13,14]. Applied to zinc-blende solids as a 
model case, trends in band gap can be predicted in terms of bond properties (length, charge, 
crystalline structure- Figure 6). 

 

Figure 6. Band gap (in eV) for IV (purple), III-V (green) and I-VI (light orange) compounds from experimental data and 
from the ELF-BCM model. 
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Quantum refinement is a method to supplement standard crystallographic refinement with 
quantum mechanical (QM) calculations.(Merz, 2015; Ryde, 2007; Ryde, Olsen, & Nilsson, 2002; 
Yu, Yennawar, & Merz, 2005) In the refinement process, the model (coordinates, B factors, 
occupancies, etc.) is optimized to provide an ideal fit to the experimental raw data (the structure 
factors).(Brünger & Rice, 1997; Kleywegt & Jones, 1997) The fit is measured by the 
crystallographic R factor or more sophisticated statistical measures (EX-ray).(Adams, Pannu, Read, 
& Brünger, 1997) For the resolution obtained for most biological macromolecules, 1–3 Å, the 
available data is not enough to determine the exact position of all atoms. Therefore, the 
experimental data is supplemented by empirical chemical information in the form of ideal bond 
lengths, angles, dihedrals and non-bonded interactions.(Kleywegt & Jones, 1998) In the language 
of computational chemistry, this corresponds to a molecular-mechanics (MM) force field 
(EMM),(Mackerell, 2004) although it is normally not energy-derived, but rather taken from a 
statistical survey of accurate crystal structures.(Engh & Huber, 1991) Consequently, the 
refinement takes the form of a minimization with the (pseudo-) energy function:(Jack & Levitt, 
1978; Kleywegt & Jones, 1997) 
 
 Ecryst = EX-ray + wA EMM

 
where EX-ray and EMM are the crystallographic and MM energy functions and wA is weight factor, 
needed because EX-ray and EMM do not have the same units. The latter specifies the relative weight 
of the two terms and it is normally determined so that corresponding forces have a similar 
magnitude in a short molecular dynamics simulation of the crystal.(Brünger & Rice, 1997; Jack & 
Levitt, 1978) 
This approach works fairly well for proteins and nucleic acids, for which there are plenty of 
information about the ideal geometry and a MM description works well.(Kleywegt & Jones, 
1998) However, for other parts of the structure, e.g. metal sites, substrates, inhibitors, cofactors 
and ligands (which often are of prime interest for the function of the macromolecule), such 
information is normally missing or much less accurate.(Kleywegt & Jones, 1998; Mackerell, 2004; 
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Merz, 2015; Nilsson, Lecerof, Sigfridsson, & Ryde, 2003) Moreover, the MM description is rather 
inaccurate, typically missing, electrostatics, polarization and charge transfer.(Lopes et al., 2013; 
Mackerell, 2004) This can lead to serious errors in the final structure, often in the active sites of 
enzymes. This can be solved by employing a more accurate energy function, provided by QM 
calculations, which automatically involve all energy terms and does not require any 
parametrization.(Neese, 2006; Ryde, 2007) In the first implementation of this quantum-
refinement approach, QM was only employed for a small, but interesting, part of the 
macromolecule, using the energy function(Ryde et al., 2002)  
 
 E -X = EX-ray12 + wA (wQM EQM1 + EMM12 – EMM1) 
 
where EQM1 is the QM energy and the subscripts indicate if the method is used for the whole 
macromolecule (12) or only for the QM regions (1). In addition, another scale factor wQM needs to 
be included, because the MM energy function is derived from statistics and therefore is typically 
3 times larger than an energy-derived energy function.(Ryde et al., 2002).  
This approach was implemented 2002 in the COMQUM-X software 
(http://signe.teokem.lu.se/~ulf/Methods/comqum_x.html), using density-functional theory 
(DFT) calculations.(Ryde et al., 2002) It was shown to locally improve the geometry of metal sites 
in proteins,(Ryde & Nilsson, 2003) owing to the accurate structures provided by DFT.(Neese, 
2006; Ryde, 2007) Moreover, it was shown that the protonation state of metal-bound ligands 
could be determined by comparing quantum-refined structures optimized in different 
protonation states with respect to the R factors, real-space R factors, bond lengths and the strain 
energy, i.e. the energy of the QM system when optimized in the protein and in vacuum (the 
latter giving the intrinsic geometry and energy).(Nilsson & Ryde, 2004) In the same way, the 
oxidation state of metal sites could be deduced,(Rulíšek & Ryde, 2006) but it was soon discovered 
that the oxidation state often changes during data collection,(Rulíšek & Ryde, 2006; Söderhjelm 
& Ryde, 2006) owing to photoreduction by electrons released by the X-rays.(H. P. Hersleth & 
Andersson, 2011). 
For the first full protein refinement a related approach was used where EMM in equation 1 was 
replaced by EQM and the CNS refinement package was used.(Yu et al., 2005) A linear-scaling 
semiempirical QM method was used for the QM model in the re-refinement.(Dixon & Merz, 
1997) This work involved the re-refinement of the BPTI structure (PDBID:5PTI) at 1Å 
resolution. Remarkably even at this high resolution the QM based re-refinement was able to 
correct several structural anomalies seen in the original classic refinement process. 
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Figure 1. Electron-density maps of two possible protonation states of the homocitrate ligand in nitrogenase.(Cao, 
Caldararu, & Ryde, 2017) The 2mFo –DFc maps are contoured at 1.0 σ and the mFo – DFc maps are contoured at +3.0 σ 
(green) and –3.0 σ (red). The figure to the left is better, especially around the O1 and O7 atoms, which is also reflected in 
the real-space difference density Z-scores,(Tickle, 2012) which are 3.0 and 3.2, respectively. 

Quantum refinement has been applied to many systems of biological or chemical interest, e.g. 
ferrochelatase, cytochrome c553, myoglobin, peroxidase, alcohol dehydrogenase, nitrite reductase, 
Mn superoxide dismutase, [NiFe] hydrogenase, nitrogenase, sulfite oxidase, particulate methane 
monooxygenase and zinc metalloproteases.(Caldararu, Andrejić, Cioloboc, & Ryde, 2017; Cao, 
Caldararu, Rosenzweig, & Ryde, 2017; Cao, Caldararu, & Ryde, 2017; Heimdal, Rydberg, & Ryde, 
2008; H.-P. Hersleth, Hsiao, Ryde, Görbitz, & Andersson, 2008; Källrot, Nilsson, Rasmussen, & 
Ryde, 2005; Xue Li, Hayik, & Merz, 2010; Nilsson, Hersleth, Rod, Andersson, & Ryde, 2004; 
Nilsson & Ryde, 2004; Rulíšek & Ryde, 2006; Ryde & Nilsson, 2003; Ryde et al., 2002; Söderhjelm 
& Ryde, 2006). 
Typical applications regard the nature, protonation and oxidation state of the active site, 
comparing different structural alternatives, as is shown in Figure 1. Application to drug design 
and ligand refinement(Borbulevych, Plumley, Martin, Merz, & Westerhoff, 2014; Fu, Li, & Merz, 
2012; Fu, Li, Miao, & Merz, 2013; Xue Li, Fu, & Merz, 2011; Xue Li, He, Wang, & Merz, 2009; 
Yu, Hayik, et al., 2006; Yu, Li, Cui, Hayik, & Merz, 2006) have advanced the accuracy of the 
representation of small-molecules in active site pockets over what is possible with classical 
models where the force field representing the ligand is generally less well validated than that for 
the protein. In the latter studies the EMM term in equation 1 was replaced with EQM/MM where the 
QM model was either semiempirical or ab initio and was implemented in the AMBER suite of 
programs.  Naturally, the largest effects in most cases were seen for low resolutions and at 
resolutions better than ~1 Å, effects of systematic errors in the QM method start to be apparent. 
The method has been extended to neutron structures,(Manzoni, Caldararu, Oksanen, Logan, & 
Ryde, 2017) as well as to NMR structure refinement(Chakravorty et al., 2013; He, Wang, & Merz, 
2009; Hsiao, Drakenberg, & Ryde, 2005; Wang & Merz Jr, 2005; Wang, Raha, & Merz, 2004; 
Wang, Westerhoff, & Merz, 2007; Williams, Peters, Wang, Roitberg, & Merz, 2009) and normal 
or polarized EXAFS (extended X-ray absorption fine structure) refinement.(Hsiao & Ryde, 2006; 
Hsiao, Tao, Shokes, Scott, & Ryde, 2006; Xichen Li, Siegbahn, & Ryde, 2015; Xichen Li, 
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Sproviero, Ryde, Batista, & Chen, 2013; Ryde, Hsiao, Rulíšek, & Solomon, 2007) In addition, the 
various methods can be combined.(Xichen Li et al., 2013; Manzoni et al., 2017) 
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Experimental charge density science and the study of properties of biomolecules are deeply 
related. A week of intensive course in this matter (this lecture being scheduled the penultimate 
day of this Erice session) hopefully convinced the reader that there is a lot to learn from the 
knowledge of the molecular charge density, whether it is known from theoretical methods, from 
a high-resolution diffraction experiment or from a combination of both such as in “Quantum 
Crystallography” approaches.      
This appears especially true in the specific case of biomolecules. Indeed, by definition, 
biomolecules are either naturally found in living organisms (endogenous), or presenting a 
biological activity (exogenous, for instance pharmaceutical drugs). These biological activities are 
necessarily related to their chemical properties and thus, to their charge distributions. There is 
abundant literature on experimental charge density studies of small biomolecules, both 
endogenous and exogenous. Indeed, the physicochemical knowledge one can expect from such 
experiments range from atomic charges, molecular dipole moments and other electrostatic 
properties (such as electrostatic potential indicating nucleophilic and electrophilic sites of a 
molecule), to topological indicators as defined in the framework of the QTAIM theory. All these 
properties can be related to the biological activity of the studied molecule, including its chemical 
reactivity or its ability to bind or to interact with a biological partner such as a protein (enzymes, 
transport proteins etc..).  
In my lecture however, I will focus on the application of experimental charge density methods to 
study properties of macromolecular systems. Hence, concerning studies of “small” biological 
molecules, I will limit myself to give the course participants a representative (but certainly not 
exhaustive) bibliography. These references [1-75] are given with their titles and classified by 
types of biomolecules, then in chronological order. It appears obviously that amino acids and 
oligopeptides were the first kind of biomolecules raising interests in the experimental charge 
density science community [1-28], with clear perspectives of possible applications to the study of 
protein structures. It must be noted however that studied amino acids are not necessarily in their 
natural L-forms: racemic DL mixtures allowing, of course, the formation of centrosymmetric 
crystals. Literature is a bit scarcer about nucleic acids (nucleobases, nucleosides or nucleotides), 
or nucleic acids derivatives [29-41], despite the quite large representation of crystal structures 
related to nucleic acids in the Cambridge Structural Database. Other types of endogenous 
biomolecules have seen their electron density experimentally measured [42-52]: hormones, 
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neurotransmitters, carbohydrates, even the very large vitamin B12 (more than 250 atoms in the 
asymmetric unit!) has been successfully studied, using a combination of transferred aspherical 
scattering factors and theoretical computations to characterize its cobalt center [49]. A number 
of pharmaceutical drugs have also been considered [53-75], with often the perspective of 
determining relationships between their electron density properties and their biological activities 
(for instance [60, 61]). Again, I wish to highlight the experimental charge density studies of 
unusually large molecules of biological interest, such as the immunosuppressant drug 
cyclosporine [65], a cyclic peptide of nearly 200 atoms, or the one of trichotoxin_A50E [67], an 
antibiotic peptide made of 18 non-proteinogenic amino acids. Finally, I suggest few reviews in 
the field of charge density science applied to biology, QSAR, drug design or medicinal chemistry 
[76-79].  
I now briefly summarize the topics I will actually discuss in my lecture, and again give a 
representative associated bibliography. I will first describe the specificities of macromolecular 
bio-crystallography and of protein structures, then introduce methods and computer programs 
that have been developed to extend what is being done in “traditional” charge density analyses 
(of small molecules) to the field of structural biology. Then I will review some of the most 
significant experimental charge densities analyses of protein structures published so far. I will 
base my lecture on selected examples among the ones I mention in these notes, with the 
objective of giving the audience the current state of the art in this field.  

Ultra-high resolution protein structures 
Protein crystals are difficult to obtain and result from a multidisciplinary process involving 
biochemistry (cloning, expression, purification of the chosen protein), crystallization 
experiments, diffraction data collection, data phasing, structure solution, and finally model 
refinement methods that are specific to this field [80]. Resulting crystals are fragile, usually of 
poor quality in terms of diffracting power (at least from a small molecules crystallographer point 
of view) and are characterized by high levels (~ 50% in average) of disordered solvent content 
[81]. Another characteristic of protein structures is the almost systematic presence of disorder. 
Proteins are indeed very flexible molecules, and this flexibility shows up as alternate 
conformations of amino acids side chains, or even main chain especially at high resolution. This 
can also be seen, when X-ray data are collected at cryogenic temperature, as “frozen” static 
disorder leading to atomic equivalent B factors in protein structures significantly larger than the 
ones found in isolated amino acids crystals studied at higher temperatures. Hence, despite 
progresses in X-ray detection technologies, crystallogenesis methods (robots!) and the advent of 
new generation synchrotrons, only 34 structures of proteins or peptides larger than 10 residues 
have been deposited in the Protein Data Bank [82] at resolutions strictly better than 0.8Å. 
Among these ultra-high resolution protein structures, a handful only has been studied by the 
mean of charge density science approaches (Table 1).  
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PDB 
ID 

Resolution (Å) 
Number of 
residues 

Number of 
atoms 

Macromolecule Name 

5D8V 0.48 83 920 High-potential iron-sulfur protein 
3NIR 0.48 48 470 Crambin 
1EJG 0.54 48 424 Crambin 
4HP2 0.64 38 395 Thiostrepton peptide 
2VB1 0.65 129 1375 Lysozyme  
1US0 0.66 316 3066 Aldose Reductase 
4REK 0.74 499 4290 Cholesterol oxidase 
5GV8 0.78 272 2490 NADH-cytochrome b5 reductase 3 

Table 1. protein structures deposited in the Protein Data Bank at X-ray diffraction data resolution better than 0.8Å 
which have been studied by the mean of charge density science approaches.  

Methods in charge density studies: from small molecules to proteins 
The transferability principle (initially exposed in a paper by Brock et al. in 1991 [83]), and the 
development of the associated libraries of transferable electron density fragments undoubtedly 
contributed to the early interest of the charge density community for protein structures [84-86]. 
The transferability principle is based on the fact that the electron density parameters of an atom 
(as defined in the Hansen & Coppens multipole model [87]) in a particular environment are 
nearly the same in all compounds containing this atom. Based on this observation, three libraries 
of electron density “building blocks” have been developed, either from accurate experimental 
charge density studies of small molecules (ELMAM [88] and ELMAM2 [89] databanks) or based 
on high-level theoretical computations: The University at Buffalo Pseudoatom Databank (UBDB 
[90-92]) and the Generalized Invariom Database (GID [93, 94]). I will not go into much details 
about these libraries, their construction and the associated bibliography because Birger Dittrich 
will discuss this matter in a dedicated lecture in this Erice school. Let’s just say all these 
transferable electron densities present a considerable interest when applied to the study of 
biological macromolecules. They allow indeed the construction of a continuous and accurate 
electron density distribution of protein structures, in a matter of minutes. Such transferred 
charge distribution gives afterward access to the computation of properties that can be directly 
correlated to the function of the protein, or to the binding mode of a ligand (electrostatic 
potential, energies, electron density critical points …). Moreover, following the electron density 
transfer, a structural refinement of a protein structure against subatomic resolution X-ray data 
allows (i) modeling the residual valence electron density peaks observed after a classical spherical 
refinement, (ii) improving the structural model, and (iii) reducing the mean square atomic 
displacements amplitudes. All these applications will be exemplified with the published studies I 
will discuss in my lecture. With the development of libraries containing transferable electron 
density fragments emerged the need for a software compatible with the charge density analysis 
of macromolecular systems. The MoPro program package (MoPro, VMoPro and MoProViewer) 
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filled that void by providing to the charge density community a software able to handle the least-
squares refinement of protein structures of reasonable sizes [95,96]. MoPro indeed implements 
the spherical and multipolar atom models as well as features such as for instance bulk solvent 
modelling and stereochemical and electron density restraints.  

Charge density studies of biological macromolecules 
All published experimental (in a broad sense of the term) charge density studies of biological 
macromolecules are based on a transferred charge distribution using either of the three available 
libraries. However, one can define two main categories, summarized below.   
1 – cases where electrostatic properties and interatomic interactions (notably between protein 
and ligand atoms) were studied using a transferred charge distribution, without any additional 
electron density refinement.   
This approach is undoubtedly the easiest to implement. Indeed, strictly speaking, only the 
experimental geometry of the protein under exam is needed, even though the structure has not 
been solved at atomic or subatomic resolution. However, in such cases, the problem of “missing 
hydrogen atoms” must be addressed: their presence in the atomic model is indeed compulsory to 
obtain meaningful electrostatic or topological properties, and because the transfer procedure 
needs all of them in the definition of electron density databases “atom types”. Fortunately, 
missing hydrogen atoms can be added using very efficient tools such as the ones available on the 
MolProbity web server [97, and references therein]. If needed, their positions can be manually 
checked / adjusted afterward on the basis of chemical intuition (hydrogen bonds, steric clashes 
…). Once the model is complete, electron density parameters can be transferred to the studied 
protein structure, and properties relevant to the protein function can be computed without 
additional refinement. 
This approach has been followed in several studies of proteins or of protein-ligand complexes. 
The authors discussed (among other things) either properties related to the electrostatic 
potential [98-101], electron density topological analysis [102, 103], or electrostatic interaction 
energies between ligand(s) and receptor(s) [104-106]. In the latter case, the molecular electron 
density decomposition into pseudo-atoms (a property of the multipole modelling), turns out to 
be especially convenient. It allows indeed to easily decompose the total electrostatic interaction 
energy into fragments contributions, showing for instance which amino acid have the strongest 
influence on the ligand binding energy. Electrostatic interaction energies computed from a 
transferred charge distribution was also exploited to score docking poses of vitamin D analogues 
in the human vitamin D receptor [107]. The hydrogen atoms issue can be overcome by the use of 
neutron diffraction on a fully deuterated protein. This has been applied to study the properties of 
an ordered water cluster in the binding pocket of a Fatty Acid Binding Protein [108]. A room 
temperature X-ray structure solved at atomic resolution was complemented by a neutron 
diffraction experiment to model the orientation of water molecules on the basis of their 
deuterium nuclear densities. A transferred electron density distribution was then used to 
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characterize the binding of the fatty acid (Fig. 1) and to study the influence of electric field 
generated by the protein on the orientation of the structured water molecules.  

 

Figure 1. Bond critical points and associated bond paths (pictured in green) of hydrogen bonds involving oxygen atoms 
of the oleic acid in the FABP binding pocket (figure taken from [108]).  

2 – cases where a charge distribution was transferred to a protein model, and the transferred 
pseudo-atoms were used as a starting point to refine structural parameters, or both structural 
and electron density parameters, before computation of properties.   
Several published studies of proteins describe an electron density transfer procedure followed by 
the refinement of atomic coordinates and thermal displacement parameters [99, 101, 109, 110]. 
In many cases, authors reported a systematic decrease of atomic B factors, of crystallographic 
agreement factors (including Rfree) and, as expected, a flattening of Fourier difference maps. This 
was also observed after the refinement of Z-DNA hexamer and dodecamer duplexes at 
respectively 0.55Å and 0.9Å resolution using the UBDB databank [110]. Afterward, electron 
density derived properties can again be computed and interpreted, such as in the charge density 
analysis of lysozyme (d = 0.65Å), in which dynamic and static electron density maps were 
compared, followed by a topological analysis of both densities in the lysozyme active site where 
the enzymatic mechanism occurs [109].   
Finally, there are studies in which refinements of the transferred charge density parameters are 
also reported [111-117]. Such approaches are trickier as they rely on truly subatomic resolution 
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X-ray data of sufficiently good quality, as well as on moderate atomic B factors, at least in the 
most ordered parts of the model. Such requirements are only met in exceptional cases: the 
decisive criterion being the actual observation of significant bonding electron density peaks in 
residual Fourier maps after the spherical refinement of the protein model. These studies took 
advantage of the repetition of identical chemical moieties along the protein polypeptide chain, 
which allowed the use of numerous chemical equivalence constraints in the multipole 
refinement. In the human aldose reductase charge density analysis [114], methodological issues 
were discussed, such as the refinement strategy, the use of bulk solvent modelling, of constraints 
and restraints and of high-order refinement to achieve a partial deconvolution of valence 
electron density and thermal displacement parameters. A slightly modified refinement strategy 
was followed by the authors of a recent work [116,117] reporting the charge density analysis of a 
high-potential iron-sulfur protein (at d = 0.48Å), and the very first experimental electron density 
characterization in a [Fe4S4] cluster relevant to the function of a metalloprotein. To conclude, I 
suggest again few reviews in this field [118-120].  
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1. Introduction: The organometallic bond – definition and functionality. 
Geoffrey Wilkinson addressed the importance of the organometallic bond in 1974 by the simple 
fact: “During the time taken to deliver this lecture, many thousands, if not tens of thousands, of 
tons of chemical compounds are being transformed or synthesized industrially in processes which 
at some stage involve a transition metal to carbon bond. The nonchemist will probably be most 
familiar with polyethylene or polypropylene in the form of domestic utensils, packaging materials, 
children's toys, and so on. These materials are made by Ziegler-Natta or Phillips' catalysis, which 
utilize compounds of the metals titanium and chromium, respectively” (Wilkinson 1974). Besides 
its unique importance in industrial applications also evolution acknowledged the unique 
properties of the organometallic bond which occurs in biological systems whenever chemical 
processes can only be accomplished in an efficient way by organometallic catalysis (e.g in 
Vitamine B12). 

 
In general, we consider compounds with direct metal to carbon bonds as organometallic 
molecules or solids. In this respect they differ from metal organic compounds where organic 
ligands are connected to the metal center by other non-metallic elements such as oxygen (e.g. 
metal alkoxides) or nitrogen (e.g. metal amides; Elchenbroich 2006). Compounds involving only 
carbon and metal to establish the organometallic M-C bond are classified as metal carbides 
which are often characterized by puzzling electronic structures and physical properties (Scherer 
et al., 2012). 
The M-C bond is usually described as a hetero polar Mδ+-Cδ- covalent σ-bond which however 
can gain multiple bond character e.g. in transition metal carbene (M=C) or carbyne (M≡C) 
complexes. When M represents a main group metal the bonding properties are mainly 
characterized by the electronegativity (EN) differences between the s,p block metal and the 
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neighboring carbon atom of the organic ligand. In the latter case the carbon’s electronegativity 
mainly depends on its hybridization. According Bent’s rules (Bent, 1961) the EN(C) values 
increase with increasing s-character in the respective hybridorbital: EN(Csp3) = 2.5, EN(Csp2 ) = 
2.75 (comparable with the EN of S) und EN(Csp )= 3.29 (comparable with the EN of Cl). Fine 
tuning of the M-C properties by ligand tailoring can usually be accounted for by determination 
of group electronegativites (e.g. EN(CH3) = 2.31 and EN(CF3) = 3.47 (Bratsch, 1985). However, a 
large variety of definition of electronegativities exist and identification of chemical trends to 
classify M-C bonds often depends on the clever choice of suitable EN concepts. This is an 
unsatisfying situation and we will learn in this lecture that analysis of the topology of the charge 
density provides a reliable and consistent alternative to classify the nature of M-C bonds in 
organometallic complexes and carbides. Further information can be retrieved experimentally by 
analyzing the response of M-C bonds under external pressure by high-pressure diffraction 
studies.  

2. The nature of the M-C bond in organometallic transition metal complexes 

2.1 Kinetic and thermodynamic stability 
As outlined in the Intro the M-C bond is usually characterized as a polar Mδ+-Cδ- σ-bond. In 
comparison with the strength of M-N, M-O and M-Cl the M-C bond is rather weak in line 
Pauling’s (1960) classical equation (3) for polar M-C dissociation energies D. This equation 
considers the additional the additional electrostatic contribution arising from the 
electronegativity difference (χM – χY) of the bonding partners in covalent M-Y bonds which 
increases from Group IV to VII elements Y.  

 
However, this simple concept cannot be employed in case of transition metal organyls since the 
strength of the M-C bonds are usually not controlled by their thermodynamic dissociation 
energies but rather their kinetic decomposition mechanism such as the  -elimination process 
rendering a transition metal alkyl in an olefin-hydride species according to Eq. 4 (Wilkinson, 
1974). 

 
Also the stability of oxidation states might control the stability of M-C bonds. For example 
Ti(CH3)4 1 displays a rather larger M-C force constants of 228 Nm-1 (Eysel 1970) but readily 
decomposes above -70°C by an intermolecular decomposition mechanism to from a stable TiIII 
decomposition product with titanium in a lower oxidation state.  
The increasing stability of higher oxidations states down the group of transition metal 
compounds is therefore reflected in the dissociation energies as illustrated in case of the Group 
IV metallocene complexes (Cp*)2MMe2 (2-M; M = Ti,Zr,Hf). Here, the largest bond enthalpy in 
the case of the Hf−C (306 (7) kJ/mol) compared to the Zr−C (284 (2) kJ/mol) and the Ti−C bond 
(281 (8) kJ/mol) (Simoes, 1990).  
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We will now outline that above sequence of bond strength (Hf-C > Zr-C > Ti-C) is also reflected 
by charge density properties. Due to the inherent instability of the (Cp*)2MMe2 complexes we 
substituted the Cp* ligands (Cp* = C5(Me)5) by the sterically more congesting ansa-bridging 
ligand L (L= rac-Dimethylsilanediylbis[4-(3’,5’-dimethylphenyl)-7-methoxy-2-methylindenyl) 
(Machat, 2018). Figure 1 shows the corresponding L2TiMe2 complex 3-Ti which is isotypic to the 
corresponding complexes 3-Zr and 3-Hf.  

 

Figure 1. ORTEP style representation of 3-Ti with ellipsoids drawn at 50 % probability level. Hydrogen atoms are 
omitted for clarity.  

2.2 Bond distances 
Comparison of the M-C bond distances in these Group IV metallocenes we see that these 
transition metal organyls clearly reflect systematic trends: 3-Ti: 2.1527(3) Å; 3-Zr: 2.2654(3) Å; 
3-Hf: 2.2443(5). The relatively large Ti-C bond in 1-Ti signals a relative weak M-C bond since 
the 3d metal orbitals which display no radial node are poorly shielded and thus too contracted to 
form strong covalent M-C bonds. The small differences in the M-C bonds of 3-Zr and 3-Hf, 
however, are a matter of the lanthanoid contraction which dominates the M-C distances of the 
5d and 6d metals. The lanthanoid contraction is mainly caused by the poor shielding of the 4f 
electrons in the 6d metals yielding rather small atomic and ionic radii which approximately have 
the same size as the corresponding 5d metals.  To a far lesser extend the lanthanoid contraction 
is caused by relativistic effects (Huheey, 2006). 

2.3 Electron Density Characteristics of M-C bonds 

We first recall some peculiarities of the M−C bond in early d0 transition metal alkyls. In general, 
these are considered as highly polar. Indeed, a partitioning of the experimental electron density in 
the framework of the Quantum Theory of Atoms In Molecules (QTAIM) (Bader, 1994) supports 
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the carbanionic nature of the methyl carbon atom Q(C) = −0.77 [−0.32] (3-Ti), −1.19 [−0.39] (3-
Zr) and −1.22 [−0.41] (3-Hf). Note, that we specify here and in the following values obtained 
from density functional theory (DFT) in square brackets. Due to the pronounced M→C charge 
transfer also the methyl hydrogen atoms of 3-M are characterized by hydridic (high-field shifts) 
of the corresponding protons in the 1H NMR spectra (δ1H = −0.83 ppm (3-Ti), −1.17 ppm (3-Zr) 
and −1.35 ppm (3-Hf). Hence, these results suggest an increase of the ionic character of the 
M−C bond in the sequence 3-Ti < 3-Zr < 3-Hf. This is also evident from the fine structure of the 
negative Laplacian of the electron density, L(r) = −∇2ρ(r), in the molecular (C,M,C) plane 
(Figure 2). The red solid/blue broken contour lines reveal regions in Figure 2b and c where the 
electron density is locally concentrated (L(r) >0) or depleted (L(r) <0), respectively (Bader, 1984). 
Apparently, each methyl carbon atom displays a bonded charge concentration (denoted BCC in 
Figure 2b,c) in its valence shell which is located on the M−C bond path and provides a measure 
of the lone pair character at the respective carbon atom (Scherer, 2001, 2002) The magnitude of 
these BCCs increases in the sequence 3-Ti < 3-Zr < 3-Hf from L(r) = 26.8 − 33.2 eÅ-5 in line 
with the increasing carbanionic character of the respective methyl carbon atoms. However, the 
L(r) topology reveals also a significant residual covalent character of the M−C bonds despite 
their polar nature. Especially, in 3-Ti the covalent nature of the M−C bonds is clearly signaled by 
the characteristic pattern of two opposing BCCs in the valence shell of metal and the methyl 
carbon atom (Figure 2b,c) which are connected by a bond path. 

 
Figure 2. (a) Density contour map of the most important M−C(Me) bonding molecular orbital (HOMO-3) in the 
molecular plane of 3-Ti. Contour levels are specified in atomic units and the percentage %py and %dyz character of the 
titanium atom refers to gross populations of symmetrized fragment (valence) orbitals (SFOs). Note that the angle 
between the density-maxima of ligand-opposed py-dyz hybrid lobes and the enclosed metal is larger than 90°; (b,c) The 
topology of the negative Laplacian, L(r) = -∇2ρ(r), reveals ligand-induced charge concentrations in the valence shell of 
the titanium atom opposite to the methyl ligands (denoted trans-LICCs) and pronounced bonded charge concentrations 
(BCC) in the valence shell of the carbon atom reflecting their carbanionic character. Positive (red, solid) and negative 
(blue, dashed) L(r) contour lines were drawn at ±2.0×10n, ±4.0×10n, ±8.0×10n e/Å5 with n = ±2, ±1, 0. 
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The formation of pronounced ligand-induced charge concentrations (trans-LICCs) opposite to 
the M−C bonds provides another signature of covalent M−C bonding (Scherer 2003) and is a 
natural consequence of the overlap between the spx hybridized orbitals at the methyl carbon 
atoms and Ti(pydyz) hybrids (Figure 2a). The M−C covalency is also witnessed by the surprisingly 
small C−M−C angle of 92.79° in 3-Ti. On contrast the Cp−Ti−Cp angles which are formed by 
the centroid of the Cp-rings and the metal are significantly larger (132.87°). 
To summarize, the increasing ionic character of the M−C bond from 3-Ti to 3-Hf is clearly 
supported by the trends observed for the (i) atomic charges at the metal and methyl group 
atoms, (ii) the carbanionic character of the carbon atoms, and (iii) the hydridic 1H chemical 
shifts. However, the presence of (iv) bonded and ligand opposed charge concentrations (denoted 
BCC and trans-LICCs in Figure 2) in the valence shell of the metal atoms in 3-Ti and 3-Zr 
suggests that the M−C bonding scenario is best described by highly polar bonds with residual 
but decreasing covalent character in the sequence 3-Ti > 3-Zr > 3-Hf.   

2.4 Probing the M-C Characteristics by High-Pressure Studies 
In the following we have studied the pressure-induced structural changes in single crystals of 3-
M. In general it is assumed that “forces in crystals act through localized bonds” which in turn can 
be identified by the QTAIM methods via the presence of a bond path (Brown, 2003). In case of 
highly symmetrical covalent compounds, hardness is defined by the bulk modulus B and 
controlled by the compressibility of their individual chemical bonds (Liu 1989). These case 
studies showed that the bond compressibility in turn increases with enhancement of the bond 
ionicity and lowering of the bond strength. In case of molecular crystals, however, the scenario is 
more complex and the low bulk modulus is often reflecting the softness of van der Waals 
contacts at lower pressure (Brown 2003). It is therefore essential to compare the compressibility 
of chemical bonds in molecular crystals displaying virtually identical crystal packing forces. This 
is actually the case for 3-Zr and 3-Hf which are isostructural and characterized by virtually 
identical lattice parameters. As a consequence of the lanthanide contraction also the 
corresponding metal to ligand bonds are very similar (Table 1). Indeed, the Hf-C bond length of 
2.2443(5) Å differs by less than 1% from the Zr-C bond distance of 2.2654(3) Å.  
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Figure 3. X-ray single-crystal diffraction data of 3-Zr and 3-Hf at variable pressure (0 – 4.0(1) GPa). The Hf−C bond 
shows a larger compressibility. 

As a consequence, we expect in case of the σ-M−C bonded methyl groups in 3-Zr and 3-Hf an 
increasing bond compressibility with increasing ionic character of the respective M−C bonds – if 
we assume that the bond strength of Hf−C is not significantly larger than that of Zr−C. In that 
case, the Hf−C bond should display the larger bond compressibility in comparison to the Zr−C 
bond due to its higher ionic character as determined in the experimental and theoretical charge 
density studies (see above). Indeed, the experimental high-pressure data (Figure 3) clearly reveal 
the larger compressibility of the Hf−C bond vs the Zr−C bond. However, analysis of the potential 
energy surface (PES) of the individual M-C bonds reveals that the Hf-C bond is stiffer than the 
Zr-C bond. The estimated force constants of the isolated ν(M−C) stretching frequencies, kis, 
increase down the row of the Group 4 complexes kis/Nm-1 = 150 (3-Ti), 149 (3-Zr) and 168 (3-
Hf) with a subtle minimum in case of 3-Zr. This is in line with the cross correlation between the 
increasing polarity of a chemical bond and the enhancement of its force constant (Haaland 
2007). However, we also need to explain why the stiffer Hf−C bond is more compressible 
compared to the softer Zr-C bond in the 3-M complexes. One might argue empirically that the 
bond ionicity rather than the bond strength predominantly controls the compressibility of the 
M−C bond. However, we will outline in the presentation on Saturday, June 9, more specifically 
the microscopic control parameters of the M−C bond compressibilities in transition metal 
organyls complexes. 
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Atomic force microscopy – microscopy with ultimate resolution 
Franz J. Giessibl, University of Regensburg, Germany 
 
 
 
 
 
Atomic force microscopy (AFM) is a tool that provides, to my knowledge, the best spatial 
resolution of all microscopy techniques. The lecture will provide a view on this topic from my 
personal perspective. AFM was introduced by Binnig, Quate and Gerber in 1986 [1] and has 
evolved into a technique with very broad applications. It has been a great privilege to serve on 
the improvement of this technique for 30 years now and I hope to bring some of the adventures 
into the lecture hall. My journey into AFM started as a graduate student with Gerd Binnig in 
1988, working on a low-temperature atomic force microscope for vacuum that provided atomic 
resolution on a chemically inert sample [2] to achieving atomic resolution on the silicon (111) 
surface as a R&D scientist in a startup company in silicon valley [3]. Frequency modulation AFM 
is the most precise method to probe surfaces at low noise, therefore taking a loan from the watch 
industry by transforming the quartz tuning fork of an electronic watch into a force sensing 
cantilever opened a new level of precision and resolution. In particular, the finding of Gross and 
Meyer to terminate the tip of the AFM sensor with a CO molecule has brought the possibility to 
probe organic molecules at atomic resolution [4]. Today, breakthroughs that became available 
with these new imaging possibilities are reported almost monthly in Science, Nature, Physical 
Review Letters and other influential journals. 

As a preparation for the lecture, I suggest to study a short review [5], or if time permits, a longer 
one [6].  

[1] G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. (1986) 
[2] F. J. Giessibl, G. Binnig, Ultramicroscopy 42, 281 (1992) 
[3] F. J. Giessibl, Science 267, 68 (1995). 
[4] L. Gross et al., Science 325, 1110 (2009). 
[5] F. J. Giessibl, Materials Today 8, 32 (2005). 
[6] F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003). 
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AFM, invented1 and introduced2 in 1986, can be

viewed as a mechanical profiling technique that

generates three-dimensional maps of surfaces by

scanning a sharp probe attached to a cantilever over a

surface. The forces that act between the tip of the

cantilever and the sample are used to control the

vertical distance. AFM’s potential to reach atomic

resolution was foreseen in the original scientific

publication2 but, for a long time, the spatial

resolution of AFM was inferior to the resolution

capability of its parent technique, STM. 

The resolution limits of STM and AFM are given by the

structural properties of the atomic wavefunctions of the

probe tip and the sample. STM is sensitive to the most

loosely bonded electrons with an energy at the Fermi level,

while AFM responds to all electrons, including core electrons.

Because electrons at the Fermi level are spatially less

confined than core electrons, in theory AFM should be able

to achieve even greater spatial resolution than STM. Today,

experimental evidence is emerging where, in simultaneous

AFM/STM studies, AFM images reveal even finer structural

details than simultaneously recorded STM images. 

The experimental advances that made high-resolution

AFM possible began with the introduction of frequency-

modulation AFM (FM-AFM). Here, the cantilever oscillates at

a fixed amplitude and frequency is used as a feedback signal.

Early implementations of FM-AFM used Si cantilevers with a

typical spring constant of 10 N/m, which oscillate with an

amplitude on the order of 10 nm. The spatial resolution was

increased by the introduction of quartz cantilevers with a
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We review progress in improving the spatial

resolution of atomic force microscopy (AFM) under

vacuum. After an introduction to the basic imaging

principle and a conceptual comparison to scanning

tunneling microscopy (STM), we outline the main

challenges of AFM as well as the solutions that have

evolved in the first 20 years of its existence. Some

crucial steps along AFM’s path toward higher

resolution are discussed, followed by an outlook on

current and future applications. 
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REVIEW FEATURE

stiffness on the order of 1 kN/m, allowing the use of

subnanometer amplitudes. The direct evaluation of higher

harmonics in the cantilever motion has enabled a further

increase in spatial resolution. 

Because AFM can image insulators as well as conductors, it

is now a powerful complement to STM for atomically

resolved surface studies. Immediate applications of high-

resolution AFM have been demonstrated in vacuum studies

relating to materials science, surface physics, and surface

chemistry. Some of the techniques developed for ultrahigh-

vacuum AFM may be applicable for increasing AFM resolution

in the ambient or liquid environments that are necessary for

studying biological or technological specimens.

Principles of AFM operation
AFM1,2 can be viewed as an extension of the toddler’s way of

‘grasping’ the world by touching and feeling, as indicated in

Fig. 1 of Binnig and Rohrer’s article3, where a finger profiles

an atomic surface. Likewise, one could argue that stylus

profilometry is a predecessor of AFM. However, AFM and

stylus profilometry have as much in common as a candle and

a laser. Both generate light and, even though candles are

masterpieces of engineering4, the laser is a much more

advanced technological device requiring a detailed knowledge

of modern quantum mechanics5. While stylus profilometry is

an extension of human capabilities that have been known for

ages and works by classical mechanics, AFM requires a

detailed understanding of the physics of chemical bonding

forces and the technological prowess to measure forces that

are several orders of magnitude smaller than the forces

acting in profilometry. 

Only the spectacular spatial resolution of STM could

trigger the hope that the force acting between an STM tip

and a sample might lead to AFM capable of true atomic

resolution. Established in 1981, the STM was the first

instrument to allow surface imaging with atomic resolution

in real space6,7. The atomic imaging of the 7×7

reconstruction of Si (111) by STM in 19838 later helped to

solve one of the most intriguing problems of surface science

at that time and establish the dimer-adatom-stacking fault

model of Takayanagi et al.9. The atomic resolution capability

of STM provided immediate evidence for the enormous value

of this instrument as a tool for surface scientists. 

STM can only be used on conductive surfaces. Given that

many surfaces of technological interest are conducting or at

least semiconducting, this may not seem a severe

shortcoming. One might think that an STM should be capable

of mapping a metallic surface under ambient conditions.

However, this is not feasible because the pervasive layer of

oxides and other contaminants that occurs at ambient

conditions prevents stable tunneling conditions. Electrical

conductivity is a necessary but not sufficient condition for a

surface to be imaged by STM with atomic resolution, because

the surface needs to be extremely clean on an atomic level.

Except for a few extremely inert surfaces such as graphite,

atomic resolution is only possible in an ultrahigh vacuum

with a pressure on the order of 10-8 Pa and special surface

preparation. 

The invention of the AFM by Binnig1, and its introduction

by Binnig, Quate, and Gerber2, opened up the possibility of

obtaining true atomic resolution on conductors and

insulators. Indeed, it took only a short time after the AFM’s

invention before apparent atomic resolution on conductors10

and insulators11-13 was obtained. While these early results

reproduced the periodic lattice spacings of the studied

samples, single defects or step edges were not observed. Also,

the forces that acted between tip and sample were often

orders of magnitudes larger than the forces that a tip with a

single front atom was expected to be able to sustain. It was

commonly assumed, therefore, that many tip atoms

interacted with the surface at the same time in these early

experiments. The difference between apparent and true

atomic resolution of a tip with many atomic contacts can be

illustrated by a macroscopic example. When profiling an egg

crate with a single egg, its trajectory would represent the

overall periodicity of the crate as well as each dented hump

or a hole. However, when profiling one egg crate with

another egg crate, again its periodicity would be retained but

holes or dented humps would pass undetected. A similar

effect can occur when an AFM tip probes a surface. As long as

single defects, steps, or other singularities are not observed,

clear proof for true atomic resolution is not established. 

Even though atomic resolution was hardly ever achieved in

the initial AFM experiments, the technique was readily

accepted and found many technological and scientific

applications. The installed base of AFMs rapidly outnumbered

their STM counterparts. A recent survey14 of the ten most

highly cited publications in Phys. Rev. Lett. ranks the original

AFM publication2 at number four (4251 citations as of 

March 11, 2005 according to ISI) – in good company with

May 2005 33
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other breakthroughs in theoretical and experimental physics

that have shaped our scientific life. Most of these citations

refer to AFM where the spatial resolution is ‘only’ in the

nanometer range, but the large number shows the vast range

of AFM applications. In spite of the rapid growth of AFM

usage, matching and even exceeding the spatial resolution of

its parent, STM, had to wait for new developments.

Challenges in achieving atomic
resolution 
The technological foundations for achieving STM with atomic

resolution (theory of electron tunneling, mechanical

actuation with picometer precision, vacuum technology,

surface and tip preparation, vibration isolation, etc.) were

probably available a few decades before 1981, but it took the

bold approach by Binnig, Rohrer, Gerber, and Weibel to

pursue atomic resolution in real space. Binnig and Rohrer

were rewarded with the 1986 Nobel Prize in Physics

(together with Ernst Ruska, inventor of electron microscopy). 

The challenges in gaining AFM with true atomic resolution

are even more daunting than the hurdles that troubled STM.

Fig. 1a shows a schematic view of a sharp tip for STM or AFM

close to a crystalline sample, and Fig. 1b is a plot of the

tunneling current and forces between tip and sample. When

tip and sample are conductive and a bias voltage is applied

between them, a tunneling current can flow. The red curve in

Fig. 1b shows the distance dependence of the tunneling

current It. The exponential decay of It with increasing

distance at a rate of approximately one order of magnitude

per 100 pm is the key physical characteristic that makes

atomic-resolution STM possible. Because of its strong decay

rate, the tunneling current is spatially confined to the front

atom of the tip and flows mainly to the sample atom next to

it (indicated by red circles in Fig. 1a). A second helpful

property of the tunneling current is its monotonic distance

dependence. It is easy to build a feedback mechanism that

keeps the tip at a constant distance: if the actual tunneling

current is larger than the setpoint, the feedback needs to

withdraw the tip and vice versa. 

In contrast, the tip-sample force Fts does not share the

helpful characteristics of the tunneling current. First, Fts is

composed of long-range background forces, depicted in light-

blue in Fig. 1b and originating from the atoms colored light-

blue in Fig. 1a, as well as a short-range component, depicted

in blue in Fig. 1b and confined to the atoms printed in blue in

Fig. 1a. Because the short-range force is not monotonic, it is

difficult to design a feedback loop that controls distance by

using the force. A central task to perfect AFM is, therefore,

the isolation of the front atom’s force contribution and the

creation of a linear feedback signal from it.

Even if it was possible to isolate the short-range force, a

more basic problem needs to be solved first: how to measure

small forces. For example, commonly known force meters,

such as precise scales, are delicate and expensive instruments

and even top models rarely exceed a mass resolution of 

100 µg, corresponding to a force resolution of 1 µN. In

addition, high-precision scales take ~1 s to acquire a weight

measurement, so the bandwidth is only 1 Hz. The force

meters in AFM, in contrast, require a force resolution of at

least 1 nN at a typical bandwidth of 1 kHz. 

Most force meters determine the deflection q’ of a spring

with given spring constant k that is subject to a force F with

F = q’/k. Measuring small spring deflections is subject to

thermal drift and other noise factors, resulting in a finite

deflection measurement accuracy δq’. The force resolution is

thus given by δF = δq’/k, and soft cantilevers provide less

noise in the force measurement. 

In contact-mode AFM, where the tip feels small repulsive

forces from the sample surface, the cantilever should be

softer than the bonds between surface atoms (estimated at

∼10 N/m) otherwise the sample deforms more than the

cantilever15. Because of noise and stability considerations,

spring constants below 1 N/m or so have been chosen for

AFM in contact mode. However, atomic forces are usually

attractive in the distance regime that is best suited for

atomic-resolution imaging (approximately a few hundred

picometers before making contact), and soft cantilevers

suffer from a ‘jump-to-contact’ phenomenon, i.e. when

approaching the surface, the cantilever snaps toward the

surface ending in an uncontrolled landing. While true atomic

REVIEW FEATURE
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Fig. 1 (a) Schematic of tip and sample in STM or AFM. The diameter of a metal atom is
typically 0.3 nm. (b) Qualitative distance dependence of tunneling current, long-, and
short-range forces. Tunneling current increases monotonically with decreasing distance,
while total force reaches a minimum and increases for distances below the bond length.
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resolution by contact-mode AFM has been demonstrated on

chemically inert samples16,17, this method is not feasible for

imaging chemically reactive surfaces where strong, attractive

short-range forces act. Long-range attractive forces are

compensated in these experiments by pulling at the

cantilever (negative loading force) after jump-to-contact16 or

by immersing cantilever and sample in water to reduce the

van der Waals attraction17. Howald et al.18 partially solved

the reactivity problem by passivating the reactive Si tip with

a thin layer of polytetrafluoroethylene (teflon). The unit cell

of Si(111)-(7×7) was resolved, but atomic resolution was not

reported with this method of tip passivation.

In summary, AFM shares challenges already known in STM

and uses many of its design features (actuators, vibration

isolation, etc.), but nature has posed four extra problems for

atomic-resolution AFM: (i) jump-to-contact; 

(ii) nonmonotonic short-range forces; (iii) strong, long-range

background forces; and (iv) instrumental noise in force

measurements.

Frequency-modulation AFM
Dynamic AFM modes19-21 help to alleviate two of the four

major AFM challenges. Jump-to-contact can be prevented by

oscillating the cantilever at a large enough amplitude A such

that the withdrawing force on the cantilever given by k x A is

larger than the maximal attractive force22. Because the noise

in cantilever deflection measurements has a component that

varies in intensity inversely with frequency (1/f noise),

dynamic AFM modes are less subject to noise than quasistatic

operating modes. Nonmonotonic interactions and strong,

long-range contributions are still present. 

In amplitude-modulation AFM19, the cantilever is driven at

a constant frequency and the vibration amplitude is a

measure of the tip-sample interaction. In 1991, Albrecht 

et al.20 showed that FM-AFM offers even less noise at larger

bandwidth than amplitude-modulation AFM. In FM-AFM, 

a cantilever with a high quality (Q) factor is driven to

oscillate at its eigenfrequency by positive feedback with an

electronic circuit that keeps the amplitude A constant. 

A cantilever with a stiffness k and effective mass m has an

eigenfrequency given by f0 = 1/(2π) (k/m)1/2. When the

cantilever is exposed to a tip-sample force gradient kts, its

frequency changes instantly to f = f0 + ∆f = 1/(2π) (k’/m)1/2,

where k’ = k + kts (Fig. 2). When kts is small compared to k,

the square root can be expanded and the frequency shift is

simply given by20:

(1)

This formula is only correct if kts is constant over the

distance range from z - A to z + A that is covered by the

oscillating cantilever. 

The force gradient kts was probably almost constant within

the oscillation interval in the first application of FM-AFM in

magnetic force microscopy by Albrecht et al.20, where

recording media with magnetic transitions spaced by ~2 µm

were imaged using a cantilever with a stiffness of ~10 N/m

oscillating at an amplitude of ~5 nm. In contrast, in the more

recent application of FM-AFM in atomic-resolution AFM, kts

varies by orders of magnitude throughout the oscillation of

the cantilever. Using FM-AFM, true atomic resolution on

Si(111)-(7×7), a fairly reactive sample, was achieved in

199423. Fig. 3 shows the topographic image of this data,

where the fast-scanning direction is horizontal. The atomic

contrast is rather poor in the lower section, quite good in a

May 2005 35

Fig. 2 (a) Schematic of a vibrating tip close to a sample in a dynamic AFM. The tip-sample
forces Fts cause a detectable change in the oscillation properties of the cantilever. 

(b) Mechanical equivalent of (a). The free cantilever with stiffness k and effective mass m
has an eigenfrequency f0 = (k/m)1/2/2π. The bond between tip and sample with stiffness
kts alters the resonance frequency to f = ([k + kts]/m)1/2/2π. When the oscillation
amplitude of the cantilever is large, kts can vary significantly within one oscillation cycle,

requiring averaging.

Fig. 3 First AFM image of a reactive surface showing true atomic resolution: Si(111)-
(7×7) reconstruction. Parameters: k = 17 N/m; A = 34 nm; f0 = 114 kHz; ∆f = -70 Hz; 
Q = 28 000; and scanning speed = 3.2 lines/s. Environment: ultrahigh vacuum, room
temperature. (Reprinted with permission from23. © 1995 AAAS.)
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narrow strip in the center, and vanishing in the top section.

These changes in contrast are the result of tip changes,

indicating fairly strong interaction during the imaging

process. A piezoresistive cantilever made of Si24, as shown in

Fig. 4a, with a stiffness of 17 N/m was used to obtain this

image. The amplitude of the cantilever can be freely adjusted

by the operator and, while it was planned to use the

thermally excited amplitude25 (~10 pm), the empirically

determined optimal amplitude values were always around 

10 nm – a similar order of magnitude as the value of 

A = 34 nm used in Fig. 3. The chemical bonding forces that

are responsible for the atomic contrast in AFM imaging of Si

have a range on the order of 100 pm26, so the amplitude is

340 times as large. 

The requirement of such a large amplitude is in stark

contrast to intuition. Imagine an atom magnified to a size of

an orange with a diameter of 8 cm. The range of the bonding

force is then only 4 cm or so. The front atom of the

cantilever approaches from a distance of 20 m and only in

the last few centimeters of its oscillation cycle does it feel

the attractive bonding forces from the sample atom next to

it. On the other hand, force gradients can be quite large in

chemical bonds. According to the well-known Stillinger-

Weber potential27, a single bond between two Si atoms has a

force gradient of kts ≈ +170 N/m at the equilibrium distance

of z = 235 pm and kts ≈ -120 N/m when the two Si atoms are

at a distance of z = 335 pm. Because of the relatively large

values of interatomic force gradients, even cantilevers with a

stiffness on the order of 1 kN/m should be subject to

significant frequency shifts when oscillating at small

amplitudes28. Nevertheless, the large-amplitude FM-AFM

technique has celebrated great successes in imaging 

metals, semiconductors, and insulators with true atomic

resolution29-33.

Optimal imaging parameters
In order to understand why these large oscillation amplitudes

are necessary, a quantitative analysis of the physics of large-

amplitude FM-AFM is necessary, starting with a calculation of

frequency shift for large amplitudes. If kts is not constant

over one oscillation cycle, eq 1 no longer holds and a

perturbation theory, such as the Hamilton-Jacobi theory34,

can be used to find the relationship between frequency and

tip-sample forces22. Other perturbative approaches have

confirmed the result35-38, and an instructive representation

of the formula is:

(2)

This equation is key to a physical understanding of 

FM-AFM, allowing evaluation of the impact of various force

components on ∆f, the experimental observable. At first

glance, the large-amplitude result resembles eq 1, where

kts(z) is replaced by an averaged value. The average force

gradient is computed by convoluting kts(z) in the interval 

z - A to z + A with a semispherical weight function. The

weight function has its maximum at u = 0, a distance A away

from the minimal tip-sample distance. The minimal tip-

sample distance zmin is an important parameter in any STM

or AFM experiment because, while a small value of zmin is

desirable for optimal spatial resolution, both tip and sample

can be damaged if zmin is too small. We can now ask, if we

keep zmin constant and vary A, what happens to our signal,

the frequency shift ∆f ? The answer is given in eq 2: as long

as the gradient of the tip-sample interaction kts remains

constant as the tip of the cantilever moves over a z-range

from zmin to zmin + 2A, ∆f stays constant. However, as A

reaches the decay length λ of the interaction, the frequency

shift drops sharply at a rate ∝ (λ/A)3/2. It turns out39 that,

for amplitudes larger than λ, ∆f is no longer proportional to

the force gradient, but to the product of force and the square

root of λ (or, equivalently, to the geometric average between

potential and force40). In FM-AFM with amplitudes large

compared to the interaction range, it is useful to define a

quantity22 γ = ∆fkA3/2/f0. The ‘normalized frequency shift’ γ
connects the physical observable ∆f and the underlying forces

Fts with range λ, where γ ≈ 0.4Ftsλ1/2 (see eqs 35-41 in33).

For covalent bonds, the typical bonding strength is on the

REVIEW FEATURE
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Fig. 4 Micrographs of (a) a piezoresistive cantilever24 and (b) a ‘qPlus’ sensor46 – a
cantilever made from a quartz tuning fork. The piezoresistive cantilever is 250 µm long, 
50 µm wide, and 4 µm thick. The eigenfrequency is 114 kHz, the stiffness 17 N/m, and the
Q factor in vacuum 28 000. The qPlus sensor has a typical eigenfrequency ranging from
10-30 kHz (depending on the mass of the tip), a stiffness of 1800 N/m, and a Q factor of
4000 in vacuum at T = 300K and 20 000 at T = 4K. One of the prongs is fixed to a large
substrate and a tip is mounted to the free prong. Because the fixed prong is attached to a
heavy mass, the device is mechanically equivalent to a traditional cantilever. The free
prong is 2.4 mm long, 130 µm wide, and 214 µm thick.
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order of -1 nN with λ ≈ 1 Å, resulting in γ ≈ -4 fNm1/2, where

a negative sign indicates attractive interaction. The crossover

from the small-amplitude approximation in eq 1 to the large-

amplitude case in eq 2 occurs for amplitudes on the order of

the interaction range λ.

Eq 2 determines the influence of the oscillation amplitude

on the third AFM challenge: the disturbing contribution of

long-range forces. Imagine an AFM tip at a minimal distance

zmin = 0.3 nm from a surface, where the total tip-sample

force is composed of a chemical bonding force with an

exponential distance dependence and a given range, plus a

long-range force with the same strength and a ten times

longer range (see Table 1 for details). In large-amplitude AFM

(here, A > 1 nm), the signal is proportional to γ, and the long-

range contribution to ∆f is (1 nm/100 pm)1/2, or

approximately three times larger than the short-range

contribution. For small amplitudes (here, A < 100 pm), ∆f is

proportional to the force gradient and the long-range

component is only 100 pm/1 nm, or 1/10 of the short-range

contribution. Therefore, small-amplitude AFM helps to reduce

the unwanted contribution of long-range forces.

Even stronger attenuation of the unwanted long-range

contribution would be possible if higher-order force

derivatives could be mapped directly. For example, if we

could directly measure ∂2Fts/∂z2, the long-range component

would be only 1/100 of the short-range contribution. For a

direct mapping of the third-order gradient ∂3Fts/∂z3, the

relative long-range component would reduce to a mere

1/1000. Higher force gradients can be mapped directly by

higher harmonic AFM, as described below.

Because the forces that act in AFM are small, optimizing

the signal-to-noise ratio is crucial for obtaining good images.

Frequency noise in FM-AFM is inversely proportional to

amplitude19,20,33,41. As discussed above, the signal stays

constant until A reaches λ and drops proportional to (λ/A)3/2

for larger amplitudes. Therefore, the signal-to-noise ratio is

maximal for amplitudes on the order of the decay length of

the interaction that is used for imaging42. For atomic

imaging, amplitudes on the order of 100 pm are expected to

be optimal. As a conclusion of these calculations, we find that

the use of small amplitudes A ≈ λ would have two

advantages: (i) increased signal-to-noise ratio42; and 

(ii) greater sensitivity to short-range forces33.

So, why was it not feasible to use small amplitudes in the

initial experiments? Two reasons, related to the mechanical

stability of the oscillating cantilever, can be identified. First,

jump-to-contact is prevented if the withdrawing force of the

cantilever when it is closest to the sample given by k x A is

larger than the maximal attraction22. Second, because tip-

sample forces are not conservative43, random dissipative

phenomena with a magnitude of δEts cause amplitude

fluctuations42,44 δA = δEts/(kA). Both problems can be

resolved by using cantilevers with sufficient stiffness.

Stability considerations propose a lower threshold for k that

depends on the tip-sample dissipation as well as the Q factor

of the cantilever. Because the frequency shift is inversely

proportional to the stiffness (eqs 1 and 2), k should still be as

low as permitted by the stability requirements. 

Stiff cantilevers were not available when we realized their

potential advantages; therefore, we built cantilevers with a

stiffness of k = 1800 N/m from quartz tuning forks44-46 (Fig.

4b). A secondary advantage of quartz cantilevers is their

greater frequency stability with temperature, which leads to

lower frequency drift, particularly if a quartz-stabilized

frequency detector is used (we used the EasyPLL by

Nanosurf®, Switzerland). Other small-amplitude approaches

with stiff, home-built W cantilevers have been demonstrated

by the Erlandsson47 and Pethica48-50 groups. 

As predicted by theoretical considerations, the stiff

cantilever allows use of subnanometer amplitudes, resulting
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Table 1 Short- and long-range contributions to AFM signals in different operating modes. 

AFM method Physical observable Short-range contribution Long-range contribution Relative short-
range contribution

Quasistatic force 1 nN 1 nN 50%

Large-amplitude FM γ ≈ 0.4×force×√range 4 fNm1/2 12 fNm1/2 25%
Small-amplitude FM force gradient 10 N/m 1 N/m 91%

Higher-harmonic nth force gradient 10n+9(n-1) N/mn 109(n-1) N/mn ≈100%(1-10-n)

This model calculation assumes a chemical bonding force F(z) = F0e-z/λ with a strength Fshort range(zmin) = 1 nN and range λshort range = 100 pm, as well as an equally strong long-range

background force with Flong range(zmin) = 1 nN and a range of λlong range = 1 nm. Depending on the mode of AFM operation, the short-range part has a different weight in the total
interaction signal. Higher-harmonic AFM offers the greatest attenuation of long-range forces.
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in an improved signal-to-noise ratio, strong attenuation of

long-range forces, and stable scanning at very small tip-

sample distances. For these reasons, spatial resolution is

increased, as shown in Fig. 5. The image shows a very clear

picture of Si with a defect and very large corrugation. The

adatoms of Si, which should be spherically symmetric, show

subatomic details that are interpreted as orbitals in the tip

atom51,52. This AFM image seems to show greater resolution

than what was known from STM. According to the ‘Stoll

formula’53, a theoretical estimate of the vertical corrugation

and, thus, the lateral resolution of STM images, two physical

parameters are crucial for the high spatial resolution of STM:

(i) the very short decay length of the tunneling current; and

(ii) a small tip-sample distance. Three likely reasons have

been identified that may explain why dynamic AFM might

provide better resolution than STM54: 

• In dynamic AFM, the minimal tip-sample distance can be

much smaller than in STM without destroying the tip

because the shear forces that act on the front atom during

scanning are much smaller in the oscillation phase where

the tip is far from the sample.

• When using large gap voltages, a variety of states can

contribute to the tunneling current, smearing the image. 

• Tip-sample forces also have repulsive components with a

very short decay length.

The first two characteristics can also be fulfilled in STM by

using a very small tunneling bias voltage and oscillating the

STM tip. Fig. 6 shows an image of Si obtained using dynamic

STM, where a Co6Fe3Sm magnetic tip was mounted onto a

qPlus sensor55,56. Each Si adatom looks like a fried egg with a

sharp central peak surrounded by a halo. The radius of the

central peak is only on the order of 100 pm, showing that

higher-momentum states57 must have been involved in this

image. The experiment was repeated with pure Co, Fe, and

Sm tips, and only pure Sm tips yielded similar images to 

Fig. 6. We conclude, therefore, that a Sm atom acts as the tip

atom in this experiment55. In atomic Sm, the electrons in the

highest occupied state are in a 4f state. If one assumes that

the electronic states at a Sm surface atom of bulk Co6Fe3Sm

are similar to atomic states in Sm, it appears likely that the

crystal field around the front atom creates a state close to

4fz3
symmetry that is responsible for the tunneling contrast.

Interestingly, very small tip-sample distances can only be

realized with oscillating tips. When the oscillation is turned

off, the current setpoint has to be reduced, otherwise the tip

would not survive the small tunneling distances.

Operation at small oscillation amplitudes not only results

in greater resolution, it also facilitates simultaneous STM and

AFM imaging. A straightforward implementation of combined

current and force measurements uses the constant-height

mode, where the z-position of the tip is held constant

relative to the plane connecting the surface atoms. A

simultaneous measurement of tunneling current and

frequency shift allows comparison of the forces and tunneling

currents. Fig. 7 shows the current and repulsive force on

graphite58 observed by simultaneous AFM and STM in

vacuum at liquid helium temperatures (4.9 K). STM only sees

the electrons at the Fermi level, while repulsive forces act

wherever the local charge density is high (i.e. over every

atom) for small enough distances. In graphite, only every

second surface atom conducts electricity, but every surface

atom exerts repulsive forces. Therefore, AFM ‘sees more’ than

STM and allows correlation of topography with local
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Fig. 6 (a) Dynamic STM image of the Si 7×7 reconstruction using a Co6Fe3Sm tip mounted

on a qPlus sensor. Parameters: k = 1800 N/m; A = 0.5 nm, f0 = 19 621 Hz; sample bias

voltage = -100 mV; and average tunneling current = 200 pA. Environment: ultrahigh
vacuum, room temperature. (b) Schematic of tip and sample states that can lead to the
experimental image shown in (a). The sample state is a dangling bond of a Si adatom with
3sp3 symmetry, while a Sm 4fz3

state is taken as the tip state. (Reprinted with permission

from55,56. © 2003 American Physical Society.) 

Fig. 5 AFM image of the Si 7×7 reconstruction with true atomic resolution using a stiff
cantilever. Parameters: k = 1800 N/m; A = 0.8 nm; f0 = 16.86 kHz; ∆f = -160 Hz; and 
Q = 4000. Environment: ultrahigh vacuum, room temperature. (Reprinted with permission
from51. © 2000 AAAS.)
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conductance. This method is promising for other materials

with more than one basis atom in the elementary cell59,60. 

While a strong bias dependence holds for atomic-resolution

STM61 as well as AFM images60,62, a pronounced difference is

that the tunneling current direction is not accessible in STM,

while the measured force direction is determined by the

cantilever’s orientation. Usually, AFM senses forces normal to

the surface, but it is also possible to perform lateral force

microscopy63 by measuring forces parallel to the surface. In a

quasistatic mode, lateral forces can be recorded

simultaneously with normal forces. In dynamic modes, it is

easier to rotate the attachment of the cantilever by 90° and

detect lateral forces. Fig. 8 shows a measurement of lateral

force gradients between a tip and a Si surface. Parallel motion

between tip and cantilever also allows the use of extremely

soft cantilevers to probe the limits of force resolution without

suffering jump-to-contact, as shown by Rugar et al.64 in

single-spin detection by magnetic resonance force microscopy.

Higher-harmonic AFM
Can we increase the spatial resolution of AFM any further?

When decreasing the amplitude from A >> λ to A << λ, the

frequency shift changes from a proportionality of Ftsλ1/2 to

Fts/λ. As outlined above, an experimental observable that is

proportional to a higher force gradient should allow even

higher spatial resolution than small-amplitude FM-AFM.

Luckily, there is a physical observable that couples directly to

higher force gradients. When the cantilever oscillates in the

force field of the sample, a shift in frequency is not the only

change in the cantilever’s motions. The oscillation of the

cantilever changes from a purely sinusoidal motion, given by

q’ = Acos(2πft), to an oscillation that contains higher

harmonics with q’ = Σ n
∞
=0 ancos(2πnft + φn). For amplitudes

that are large with respect to the range of Fts, the higher

harmonics are essentially proportional37 to ∆f. However, for

small amplitudes, Dürig65 has found that Fts can be 

recovered immediately within the distance range from zmin to

zmin + 2A if the amplitudes and phases of all higher

harmonics of the cantilever’s motion are known. Moreover,

higher harmonics bear even more useful information: direct

coupling to higher force gradients66. Similar to eq 2, we can

express the magnitude of the higher harmonics by a weighted

average of a force gradient – a gradient of order n > 1 this

time:

(3)

The weight function changes from the semispherical shape 

w∆f(u) = (1 - u2)1/2 in eq 2 to functions wn(u) = (1 - u2)n-1/2

that are more and more peaked with increasing n. For this

reason, the use of small amplitudes is of even greater

importance in higher harmonic AFM than in FM-AFM. The

magnitude of the higher harmonic amplitudes an is rather

small compared to the fundamental amplitude a1 = A;

therefore, higher harmonic AFM works best at low

temperatures, where the detection bandwidth can be set to

very small values.

The spatial resolution of AFM and STM is fundamentally

limited neither by the mechanical vibration level nor by

thermal vibrations, but by the spatial extent of the

experimental objects that are observed – electrons at the

Fermi level in STM67 and something close to the total charge

density in repulsive AFM68. When probing the resolution

limits of AFM, we first have to find an object with the desired

sharply localized electronic states. Pauling69 noted that

Fig. 8 (a) Topographic STM image of Si(111)-(7×7) where the tip is mounted on a lateral
force sensor. The tip oscillates with A ≈ 80 pm in the y-direction in the lower half of the
image; the oscillation is turned off in the upper half. (b) Corresponding lateral force
gradient. On top of the adatoms, the bond between tip and sample causes an increase in
frequency shift. Parameters: k = 1350 N/m; A = 80 pm (bottom), A = 0 (top); 
f0 = 10 214 Hz. Environment: ultrahigh vacuum, room temperature56.
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Fig. 7 (a) Constant-height STM image of graphite, and (b) simultaneously recorded AFM
image (repulsive). (c) Estimate of the charge density at the Fermi level (visible in STM),
and (d) total charge density (relevant for repulsive AFM) for graphite. Parameters: 
k = 1800 N/m; A = 0.3 nm; f0 = 18 076.5 Hz; and Q = 20 000. (Reprinted with permission

from58. © 2003 National Academy of Sciences, USA.) 
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transition metals show a covalent bonding character and

should therefore expose lobes of increased charge density

toward their neighbors. Indeed, while the surface atoms of

W(001) expose a large blurred charge cloud at the Fermi level

for k-vectors perpendicular to the surface (Fig. 8 in70), the

total charge density shows four distinct maxima (Fig. 3 in70

and Fig. 3a in71). Fig. 9 shows a direct comparison of the

simultaneously recorded tunneling current and higher

harmonic amplitudes. As expected, the higher harmonic data

shows much greater detail.

Summary and conclusion
We have substantiated the enormous usefulness of AFM by

referring to the numerous references to the original

publication2 in the introduction. While most AFM

applications are currently not in the atomic-resolution

regime, the enhancement in spatial resolution is likely to

create value in most AFM studies in physics, chemistry,

biology, and materials science. 

Recently, true atomic resolution in FM-AFM has been

observed at ambient pressure in an N2 atmosphere72,

showing that some of the concepts of vacuum AFM are

applicable in ambient environments. Although STM resolution

can benefit from oscillating the tip, a concept that originated

in AFM, Fig. 9 shows that AFM has now clearly reached and

even surpassed the resolution capability of STM. Fig. 10

shows the evolution of AFM resolution from large-amplitude

AFM in 1994 (Fig. 10a) to small-amplitude AFM in 2000 

(Fig. 10b) and higher-harmonic AFM in 2004 (Fig. 10c). While

the structures within single atoms shown in Figs. 10b and 10c

originate in the front atom of the probe, there are other

examples where AFM shows more atomic details than STM

that establish the improved spatial resolution of AFM over

STM in special cases. These include the observation of the

rest atoms in Si(111)-(7×7)73,74 or the observation of all

dangling bonds on the Si/Ge(105) surface75. 

Atomic and molecular structuring has long been the

domain of STM, from the first demonstration of manipulating

single atoms76 to a variety of STM nanofabrication

methods77. Recently, it has been shown that atomic

manipulation by AFM is possible even at room temperature78.

REVIEW FEATURE
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Fig. 9 Simultaneous constant-height STM (left column) and higher-harmonic AFM images
(central column) of graphite using a W tip. The right column shows the proposed
orientation of the W tip atom. The W atom is represented by its Wigner-Seitz unit cell,
which reflects the full symmetry of the bulk. We assume that the bonding symmetry of the
adatom is similar to the bonding symmetry of the bulk. This assumption is based on 
charge density calculations of surface atoms70,71. In the first row, the higher harmonics
show a two-fold symmetry, resulting from a [110] orientation of the front atom. In the
second row, the higher harmonics show a roughly three-fold symmetry, as expected for a
[111] orientation. In the third row, the symmetry of the higher-harmonic signal is
approximately four-fold, as expected for a tip in [001] orientation. Parameters: 
k = 1800 N/m; A = 0.3 nm; f0 = 18 076.5 Hz; and Q = 20 000. Environment: ultrahigh

vacuum, T = 4.9 K. (Reprinted with permission from66. © 2004 AAAS.)

Fig. 10 Progress in AFM spatial resolution showing images of single atoms. The lateral
scale in (a)-(c) is equal. (a) An adatom of the Si(111)-(7×7) reconstruction, showing up
as a blurred spot. (b) An adatom of the Si(111)-(7×7) reconstruction, showing
subatomic contrast originating in the electronic structure of the tip. (c) Higher-harmonic
image of a W atom mapped by a carbon atom. Parameters: (a) k = 17 N/m; A = 34 nm; 
f0 = 114 kHz, ∆f = -70 Hz; and Q = 28 000 (ultrahigh vacuum, room temperature); 
(b) k = 1800 N/m; A = 0.8 nm; f0 = 16 860Hz; ∆f = -160 Hz; and Q = 4 000 (ultrahigh
vacuum, room temperature); (c) k = 1800 N/m; A = 0.3 nm; f0 = 18 076.5 Hz; and 

Q = 20 000 (ultrahigh vacuum, T = 4.9 K), higher harmonic detection. (d) Schematic of a
Si(001) tip close to a Si(111)-(7×7) surface. Because of the large amplitude and a fairly
large minimum tip-sample distance, the blurry image (a) corresponding to this
configuration is approximately symmetric with respect to the vertical axis. (e) Similar to
(d), but at a closer distance. The angular dependence of the bonding forces is noticeable.
(f) W(001) surface close to a carbon atom in a graphite surface. The charge distribution in
W shows small pockets that are resolved by higher-harmonic AFM with a light-atom
carbon-probe. (Parts (c) and (f) reprinted with permission from66. © 2004 AAAS.)
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We have not been able to discuss the phenomenal success

of AFM in biology, a field with a much more immediate

impact on the human condition. It can be expected that at

least some of the concepts that have been developed for AFM

in vacuum will enable greater resolution in biological AFM

applications as well79,80. MT
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Numerous nonequilibrium processes in condensed matter involve changes of atomic and 
electronic structure. The rearrangement of atoms in a phase transition or a chemical reaction, 
charge relocations and changes of spin states in electron transfer and/or magnetic processes, as 
well as field-driven changes and mixing of electronic orbitals are basic phenomena which 
determine functional properties. The elementary steps of many of such processes occur on 
ultrafast time scales, covering a range from 100 as (10-16 s) to ~10 ps (10-11 s). Nonlinear time-
resolved spectroscopy from the far infrared to the soft x-ray range has given detailed insight into 
such dynamics and the interactions governing them but provides very limited information on 
structures at atomic length and time scales. 
In recent years, there has been impressive progress in developing and applying x-ray  probes of 
ultrafast structural dynamics. Femtosecond x-ray diffraction has seen rapid progress with 
numerous applications in physics, (bio)chemistry, and materials science. This lecture gives an 
introduction into this new field with particular emphasis on structural dynamics in crystalline 
materials. After introducing basic experimental concepts, prototypical results on lattice and 
charge dynamics are presented, with particular emphasis on time-resolved x-ray powder 
diffraction data for deriving time-dependent charge density maps and electric polarizations.  The 
present lecture notes provide some background and are partly based on the review articles [1-4]. 

Sources of ultrashort hard x-ray pulses and experimental methods 

X-ray sources. X-ray diffraction requires hard x-ray radiation with wavelengths smaller than or 
at least comparable to interatomic distances in matter. There are two different classes of sources 
of ultrashort x-ray pulses, (i) accelerator based large scale facilities such as free electron lasers 
(FELs) and so-called slicing beamlines at synchrotrons [5-7], and (ii) laser-driven table-top 
plasma sources. The present generation of hard x-ray FELs is based on the self-amplified 
stimulated emission (SASE) of x-rays generated by relativistic electron bunches in undulator 
structures [8]. X-ray generation starts with spontaneous radiation from an electron bunch 
(macro-bunch) which is structured into micro-bunches by interaction with the strong radiation 
field after a sufficient propagation length in the undulator. The micro-bunches display a spatial 
periodicity identical to the light wave and, thus, the coherent superposition of the emission from 
all micro-bunches leads to an intensity I∝N2 where N is the total number of radiating electrons. 
The first hard x-ray FEL has been the Linac Coherent Light Source (LCLS) at SLAC, Stanford 
[9], followed by SACLA, Sayo, Japan [10], the European XFEL in Hamburg, and a number of 
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ongoing projects, among them the SwissFEL, Villigen. Some key parameters of the LCLS hard x-
ray output are summarized in Table 1. 
The statistically fluctuating initial condition of the SASE process results in fluctuations of both 
the spectral and the time structure of the generated pulses. The time structure of the SASE FEL 
pulses consists of a sequence of up to several 100 short coherent spikes with an average 
coherence time of 0.55 fs and coherence length of 17 μm [11]. The timing jitter between the 
SASE FEL pulses and an external femtosecond laser is of the order of 200 fs r.m.s. (root mean 
square), affecting the time resolution of optical pump/x-ray probe experiments. The spectral and 
temporal pulse characteristics can be strongly improved by seeding the FEL, i.e., providing a 
well-defined initial condition for the amplification process. Hard x-ray self seeding of the LCLS 
has been reported in ref. [12].  
Laser-driven hard x-ray sources rely on the interaction of femtosecond laser pulses with a peak 
intensity of the order of I=1017 W/cm2 with a metallic target [13]. The strong electric field of the 
pulse extracts electrons from the metal surface by field ionization. The generated free electrons 
are subsequently accelerated for a half cycle of the driving field into the vacuum, a process called 
vacuum heating [14], and in the next half cycle of opposite sign smashed back into the target. 
The electrons reach a kinetic energy of several hundreds of keV which is proportional to Iλ2 (λ : 
optical driving wavelength). They generate characteristic x-ray emission by inner shell ionization 
of target atoms and Bremsstrahlung by inelastic scattering with target atoms. The time structure 
of the characteristic x-ray emission is determined by the duration of the driving pulse and the 
electron deceleration kinetics in the target, in particular by the target thickness. 
State-of-the-art hard x-ray sources are driven by sub-50 fs pulses of millijoule energies from 
amplified Ti:sapphire lasers working at a 1 kHz repetition rate [15,16]. Using Cu tape targets of 
20 μm thickness, characteristic Kα pulses (photon energy 8.04 keV) have been generated with a 
total flux of up to 1011 photons/s into the full solid angle. For diffraction experiments, x-ray 
emission into a fraction of the total solid angle is collected with an x-ray optics and focused onto 
the sample, resulting in a collimated hard x-ray flux of up to several 106 photons/s. The duration 
of the hard x-ray pulses is 100 fs for a target thickness of 20 μm. A major advantage of this 
generation scheme consists in the synchronization of the x-ray pulses with the driving laser 
output, i.e. a timing jitter negligible compared to the x-ray pulse duration. Table 1 summarizes 
the main parameters of such sources. 
An enhancement of the kinetic energy of electrons in the vacuum heating process results in a 
higher yield of both characteristic x-ray emission and Bremsstrahlung. This is possible with 
driver pulses of longer wavelength which provide a longer electron acceleration period. An 
enhancement of the x-ray photon number per pulse by a factor of 20 was observed with driving 
pulses centered at a wavelength of 4 μm [17], in agreement with theoretical simulations [18]. The 
development of mid-infrared drivers with kilohertz repetition rates is presently underway [19]. 
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(from ref. 1) 

X-ray probes of ultrafast structural dynamics. Most studies of ultrafast structural dynamics 
make use of a pump-probe approach. A femtosecond optical excitation pulse induces a change of 
equilibrium structure and an ultrashort x-ray probe pulse of variable time delay maps the 
momentary structure of the excited sample. Resonant absorption of the pump pulse generates 
nonequilibrium populations of electronically and/or vibrationally excited states from which a 
structure changing process starts. Both excitations localized within a unit cell and delocalized 
electronic or propagating phonon excitations have been generated. For localized excitations, the 
fraction of excited unit cells in crystalline samples is typically less than 1 %. Interaction with 
nonresonant pump pulses induces a field-driven change, connected with a mixing of quantum 
states, i.e., a virtual excitation. In the probing step, interaction with the x-ray pulse should be in 
the linear regime of light-matter interaction and leave the momentary structure unchanged. 
The time resolution of pump-probe experiments is determined by the duration of pump and 
probe pulses, the timing jitter between them, and the interaction geometry with the sample. 
Laser-based experiments in which both optical pump and x-ray probe are derived from a single 
laser system, as well as laser-driven slicing schemes at synchrotrons offer a timing jitter that is 
negligible compared to the respective pulse durations. A time resolution of ~100 fs has been 
demonstrated with both types of experiments. This issue is more critical when using FELs and 
an independent laser system for optical excitation. Here, the typical jitter has been of the order 
of 200 fs when averaging over many pump-probe events. Schemes for sorting individual pump-
probe events in the recorded data set are being used for improving the time resolution [20]. This 
allows for shrinking the timing uncertainty to approximately 10 fs, close to the x-ray pulse 
duration. 
Ultrafast structural dynamics have been probed via (i) nonresonant Bragg diffraction from 
(poly)crystalline materials, and (ii) resonant x-ray diffraction from crystalline materials with a 
correlated electron and/or spin system, including magnetic systems. 
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(i) Structural dynamics has been investigated by Bragg diffraction of ultrashort hard x-ray pulses 
from single crystals and/or crystalline powders [1-4]. The angular position of a particular Bragg 
reflection is determined by the condition k’-k=Ghkl where k’ and k are the wavevectors of the 
scattered and the incoming x-ray pulse and Ghkl is the reciprocal lattice vector of the (hkl) set of 
lattice planes. The intensity of the Bragg peak Ihkl ∝ |Fhkl|2 is proportional to the square of the 
structure factor Fhkl = |Fhkl|exp(iφhkl) which represents the (spatial) Fourier transform of the 
electron density ρ(r) in the unit cell of the crystal. While the time dependent position of a Bragg 
peak reflects the time-dependent spacing of lattice planes, its transient intensity gives insight 
into the redistribution of electronic charge. Time dependent structure is reconstructed from a 
sequence of diffraction patterns recorded for different pump-probe delays. Measuring intensity 
changes on a multitude of Bragg reflections allows for reconstructing time-dependent electron 
density maps. 
(ii) Resonant x-ray diffraction [21] with a femtosecond time resolution has been implemented at 
LCLS [22–25]. In this method, the elastically scattered x-ray probe pulses are resonant to an 
atomic inner-shell transition of the system, in most cases in the soft x-ray regime. Under 
resonance conditions, the diffraction pattern contains - in addition to peaks from nonresonant 
Bragg diffraction - a resonantly enhanced contribution which gives rise to additional peaks. The 
resonant atomic scattering factor allows for separating different atomic species with their 
resonances at different transition energies. This ’chemical’ sensitivity is particularly attractive 
when studying materials with large unit cells consisting of many atomic species. In general, 
resonant atomic scattering factors are tensorial quantities which reflect the ordering of 
electronic orbitals and the magnetic order of the system.  
The sensitivity of femtosecond x-ray experiments, i.e., the smallest detectable change of 
diffracted intensity ΔI/I0 = [I(t)-I0]/I0 (I0: diffracted intensity without excitation; t: delay time) 
depends on the stability of the pulse parameters such as intensity, temporal envelope, and 
overlap of pump and probe spots on the sample. A fundamental limitation is the photon 
counting statistics in the x-ray detection process. The counting shot noise leads to a relative 
uncertainty of N-1/2 of the detected signal ΔI/I0 (N: number of x-ray photons counted by the 
detector). Counting shot noise is a major issue when using probe pulses with a comparably low 
x-ray flux from slicing or laser-driven plasma sources but there are sophisticated schemes to 
mitigate such noise [26]. The so far smallest signals of ΔI/I0=10-3 have been measured with a 100 
fs time resolution in powder diffraction experiments with a plasma source working at a 1 kHz 
repetition rate [27]. Typical integration times were several hours per delay position, realized by 
combining different data sets with a precise relative timing. Future FEL experiments with 
sufficient beam time at a high x-ray flux should reach a similar sensitivity with much shorter 
integration times. 
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Ultrafast x-ray diffraction 

Real-space atomic motions and vibrational dynamics. Time-resolved x-ray diffraction has 
been applied to study different regimes of atomic motions. Appropriate optical excitation of a 
crystalline sample induces local atomic motions in the excited unit cells, typically less than 1% of 
all unit cells. Such motions have the character of optical phonon wavepackets and occur on a 
femtosecond time scale determined by the respective phonon frequencies. The related lattice 
elongations are a few percent of the lattice constant or chemical bond length at most. On a 
longer time scale, acoustic phonon and/or polariton propagation has been observed. This 
behavior is connected with mechanical strain propagation through the material, changing the 
lattice constants of a much larger fraction of unit cells. This results in changes of the shape and 
position of the rocking curve. 
Both types of excitations eventually decay via dephasing and energy relaxation of the 
wavepacket. The population decay into other phonon modes via anharmonic coupling generates 
a quasi-equilibrium state at an elevated temperature and expands the lattice thermally. 
There are different mechanisms for exciting lattice motions which have been reviewed in ref. 
[28]. The following excitation schemes have been applied in ultrafast x-ray diffraction: 
(i) Displacive excitation: Electronic excitation via a bandgap results in a change of the electronic 
wavefunction and, thus, of the potential energy surface of vibrations/phonons which couple to 
the electronic transition. The minimum of the excited-state potential is shifted along the 
respective vibrational coordinate and the displaced initial vibrational wavefunction, a 
nonstationary wavepacket, moves along the vibrational coordinate, connected with coherent 
phonon elongations. 
(ii) Raman excitation: Impulsive Raman excitation by a broadband femtosecond pulse generates 
a superposition of optical phonon or polariton eigenstates in the electronic ground state and a 
concomitant wavepacket motion. Excitation in the range of a dipole-allowed electronic 
transition enhances the Raman cross section resonantly as has been analyzed in detail in the 
time-domain wavepacket picture developed in Ref. [29].  
(iii) Electronic excitation of metals and semiconductors allows for generating nonequilibrium 
conduction band electrons which thermalize into a hot (quasi-)Fermi distribution and transfer 
excess energy to the lattice via electron-phonon coupling. If the fully incoherent cooling process 
is fast compared to the phonon oscillation period, it can generate an ’impulsive’ stress that drives 
coherent motions along low-frequency phonon coordinates.  
Local oscillatory lattice motions in real-space are connected with a modulation of electronic 
charge density and, thus, of the x-ray structure factor. This gives rise to an intensity modulation 
of the corresponding Bragg peaks. The angular positions of the Bragg peaks remain unaffected as 
long as the size of the unit cells is unchanged. Phonon frequencies are directly mapped into the 
oscillation period of Bragg peak intensities whereas the extraction of spatial phonon amplitudes 
requires a quantitative analysis of the amplitude change of the structure factor. The subsequent 
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decay of the wavepacket and heating of the lattice induce an angular shift of Bragg peaks on time 
scales between a few and hundreds of picoseconds.  
Ultrafast lattice motions and strain propagation have extensively been studied in both bulk and 
nanolayered crystalline materials. Examples can be found in [1-4,30-37].  

Transient electron density maps. The structure factor Fhkl = |Fhkl|exp(iφhkl) of x-ray diffraction 
represents the Fourier transform of the electron density ρ(r). This fundamental relation allows 
for deriving spatially resolved electron density maps from x-ray diffraction patterns containing a 
large number of Bragg peaks (hkl). Stationary x-ray Bragg and Laue diffraction have widely been 
applied to generate equilibrium charge density maps with up to picometer spatial resolution 
[38,39]. The recent implementation of ultrafast x-ray powder diffraction [40] which provides 
time resolved diffraction patterns consisting of up to 40 Debye Scherrer rings, has allowed for 
creating the first transient electron density maps with a time resolution of 100 fs. Such 
pioneering work has given new insight into field-driven electron relocations,  the interplay of 
lattice and electron motions in ionic and ferroelectric crystals, as well as in elementary chemical 
processes such as hydrogen transfer [4,27,41-46]. 
The change of diffracted intensity ΔIhkl/I0 = [Ihkl(t)-I0]/I0 integrated over a Debye Scherrer ring 
(hkl) is given by 

 
Here, Mhkl is the multiplicity of the (hkl) diffraction ring and LPhkl represents the Lorentz 
polarization factor. F0

hkl and Fex
hkl(t) is the structure factor of the unit cell before and after 

excitation, respectively, and η<<1 is the fraction of excited unit cells. In calculating the quantity 
|Fhkl(t)|2, the product term Fex

hkl(t)×F0
hkl describes the interference of x-rays diffracted from 

excited unit cells with those diffracted from unexcited unit cells. In other words, the strong x-ray 
component diffracted from unexcited unit cells serves as reference wave in heterodyning the 
much weaker x-rays diffracted from the small fraction η of modified unit cells. 
Deriving electron density maps from the measured intensity changes ΔIhkl(t) requires to know 
Fex

hkl(t) in amplitude and phase. For a powder of crystallites consisting of unit cells with inversion 
symmetry, the structure of excited crystallites averaged over all orientations in the powder is 
again inversion-symmetric. Thus, the initial phase φhkl =0,  is preserved. Neglecting terms 
quadratic in η, the following relation between the change in the structure factor ΔFhkl(t) = 
Fex

hkl(t)-F0
hkl and ΔIhkl(t) is derived: 

 
Here, all quantities on the r.h.s are known, allowing for determining ΔFhkl(t). The latter provide 
the change Δρ(r, t) of electronic charge density via the Fourier series 
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a*, b*, and c* are the reciprocal lattice vectors of the lattice vectors a, b, and c of the unit cell. 
The spatial resolution and, thus, the accuracy of the generated electron density maps increases 
with the number of Debye Scherrer rings (hkl) recorded up to a maximum diffraction angle θmax. 
Deriving transient charge densities for crystalline systems without inversion symmetry requires 
more sophisticated methods [27], including iterative numerical procedures such as, e.g., the 
Maximum Entropy Method (MEM) [4,47-49]. 
In the lecture, different examples of transient charge density maps will be discussed. In polar or 
ionic systems, in particular ferroelectrics, they reveal a subtle interplay of small-amplitude lattice 
motions and large-amplitude charge relocations. Such behavior is characteristic for so-called 
soft-modes [50] which play a key role in para- to ferroelectric phase transitions. With the time-
dependent charge density maps at hand, one can go one step further and derive the time-
dependent macroscopic electric polarization of the excited material from the microscopic charge 
distributions, in this way solving a long-standing problem of condensed matter physics [46].  
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Introduction 
At this stage of the School you should have an excellent idea of what quantum crystallography is, 
and the various approaches – experimental and computational – that can be used to obtain 
information about the structure, bonding, dynamics and properties of crystalline solids. In this 
lecture I would like to focus attention on some of the ways in which quantum crystallography, 
particularly in the form of charge density analysis of X-ray diffraction data, is being applied to 
problems in crystal engineering. 
Although not limited to molecular crystals, the term crystal engineering is generally understood 
to mean something like "the understanding of intermolecular interactions in the context of 
crystal packing and the utilization of such understanding in the design of new solids with desired 
physical and chemical properties",[1] and this is how the term will be understood in this lecture. 
Crystal engineering is often invoked in the introduction to charge density studies on molecular 
crystals, and the following excerpts highlight the way in which these applications of charge 
density analysis are typically focused on polymorphism, and related topics associated with 
compounds of pharmaceutical relevance: 

“In recent years, the occurrence of polymorphism in molecular crystals has received considerable attention, especially 
from the drug design and crystal engineering viewpoint”.[2] 
“The study of polymorphism in piroxicam provides us knowledge on the behaviour of zwitterionic molecules and 
therefore gives us potential insights into new methods available which may benefit efforts in crystal engineering”.[3] 
“The utility of cocrystals in crystal engineering specifically for improving active pharmaceutical ingredients (APIs) has 
recently refocused the scientific spotlight onto the field of crystallography”.[4] 
“Crystal engineering refers to the rational design of solids by inducing the reproducible formation of weak interactions 
between pairs of functional groups. This field has recently undergone a resurgence because of increased interest from 
pharmaceutical companies and research institutions. This coincides with a recent reduction in the number of novel 
drugs approved by the FDA and other global regulatory agencies relative to the early 1990s”.[5] 

The excellent 2014 review article “Charge density analysis for crystal engineering”, co-authored 
by one of the organisers of this School, has covered almost all of the content that might be 
expected to appear in a lecture with the title at the top of this page. But I would like to do 
something quite different here, and highlight a topic that was not covered in much detail in that 
review: I would like to shine a forensic light on recent attempts to derive quantitative estimates 
of intermolecular interaction energies, and especially lattice energies, from the multipolar 
modelling of X-ray diffraction data. 
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The intermolecular interaction energy 
Before discussing actual examples, it is important to establish precisely what we mean by this 
interaction energy, its relationship with the charge distributions of the interacting molecules, 
especially in the context of experimental molecular electron densities. For the past 50 years or so 
(see ref. [6] and references therein) the interaction energy between two molecules has been 
conveniently expressed as a sum of several discrete terms, the main ones being electrostatic, 
polarisation (or induction), dispersion and exchange-repulsion: 

Etot = Eele +Epol +Edis +Erep  1) 

The first term is simply the classical Coulombic interaction between the two unperturbed 
molecular charge distributions (electrons and nuclei), and it can be positive (= de-stabilising) or 
negative (= stabilising). The second is also electrostatic in nature, being the energy lowering 
associated with the perturbation (polarisation) of the electron density of each molecule by the 
other, and is always negative. The third term arises from non-classical effects and is also always 
negative, while the last term is always positive (as its name implies), and arises from the overlap 
of the two molecular wavefunctions. 
There are several important points to note when using this expression in experimental quantum 
crystallography: 
1. Only the first two terms are accessible from the electron density of a molecule extracted 

from its crystal environment; this is kind of obvious. 
2. A molecular electron distribution extracted by modelling of experimental data necessarily 

reflects the perturbation due to its surrounding crystal environment.  
3. There are many possible model electron densities that will provide only slightly different 

fits to the experimental observations, so any one that is chosen as the ‘best’ necessarily 
includes the effects of systematic and random errors.  

4. Because of 2. it is commonly assumed (and often stated emphatically) that the calculation of 
the electrostatic energy between two perturbed molecules yields the first two terms above, 
Eele(polarized) = Eele + Epol. This is not true. Careful analysis[7] shows instead that it 
overestimates the ‘true’ electrostatic energy, and in fact Eele(polarized) is closer to Eele + 
2Epol. 

5. Edis and Erep are typically estimated via an atom-atom potential, usually of exp-6 form, and 
commonly those due to Spackman[8] or Williams and Cox.[9] This is an approximation, as 
the atom-atom representation of dispersion and repulsion energies depends intimately on 
the way in which the electrostatic terms are computed. In short, those atom-atom 
potentials are not compatible with the electrostatic energy obtained from experimental 
charge distributions. 

6. Because of 3. estimating the uncertainty associated with the experimentally-derived 
electrostatic energy is essential. Without any idea of the likely magnitude of this 
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uncertainty, any comparison with other results, experimental or theoretical, is far less 
meaningful. 

Because the electrostatic energy is clearly the most important energetic quantity that can be 
derived from experimental quantum crystallography, we also need to recognise the different 
ways in which this term has been calculated – now, as well as in the past. To see these 
differences most clearly, note that the Coulombic interaction energy between two molecules A 
and B, with charge densities  A(rA) and  B(rB BB), is 

Eele = ρA∫∫ (rA)ρB(rB) | rA − rB |−1 drAdrB  (2) 

These charge densities include point nuclear charges and electron densities, and they can be 
partitioned into atom-centred pseudoatoms, each consisting of a spherical atomic term 
(including a nucleus) and a deformation term: 

ρA = {
i∈A
∑ ρA,i

atomic + ΔρA,i }

= ρA
promolecule + ΔρA

 (3) 

From this the product of molecular charge densities in eq. (1) can be expanded to give 

ρAρB = ρA
proρB

pro + (ρA
proΔρB + ρB

proΔρA)+ΔρAΔρB  
and substituting this expansion into eq. (2) results in an expression like this: 

Eele = Eele
pro−pro +Eele

pro−def +Eele
def−def  (4) 

Early attempts to calculate electrostatic energies from experimental electron densities 
approximated the electron distribution by a sum of atom-centred multipole moments (point 
charges, dipoles, quadrupoles etc. on each atom), and used expressions due to Buckingham[10] to 
compute the electrostatic energy. But the spherical atomic charge densities have zero multipole 
moments, so this approximation amounts to ignoring the first two terms in eq. (4). Numerous 
examples are available where this approach was used,[7b,11] but the promolecule contribution to 

the electrostatic energy in eq. (4), E , is always negative at intermolecular separation 
distances,

ele
pro−pro

[12] and typically in the range –10 to –70 kJ mol–1 for nearest neighbour intermolecular 
interactions.[13] As such it is essential to include that contribution, and several studies have been 
reported that corrected the multipole-moment term in eq. (4) by adding a close approximation 

to .Eele
pro−pro +Eele

pro−def [14] 
The accurate calculation of electrostatic interaction energies from experimental charge densities, 
eq. (2), was significantly advanced by the publication of the combined exact potential and 
multipole method (EP/MM),[15] which “combines numerical quadrature evaluation of integrals 
involving the electron density and potentials for short-range pseudoatom-pseudoatom 
interactions with the standard Buckingham-type multipole approximation for long-range 
interactions”. Incorporation of this method into XD[16] has resulted in the reporting of 
“experimental” intermolecular interaction energies – and lattice energies – as outcomes of a 
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charge density analysis of X-ray diffraction data, and these results are the subject of this lecture 
(and the reason for the question in the title). Numerical calculation of accurate electrostatic 
energies, eq. (2), can also be performed with VMoPro, a properties visualization part of the 
MoPro software,[17] but I am aware of only one report[18] of experimental electrostatic energies 
using that software, and none of lattice energies. 

The lattice energy 
Rather than discuss numerous examples of interaction energies, for molecular pairs with 
different orientations, arising from something like twenty recent charge density studies, I am 
going to focus on the sum of those energies – the lattice energy. This is not simply a matter of 
convenience (although one quantity per crystal structure makes for a more succinct discussion). 
The logic here is that the lattice energy is closely related to a thermodynamic quantity – the 
sublimation enthalpy – for which experimental measurements are available for a very large 
number of crystalline materials.[19] And of course lattice energies can aid in understanding the 
relative stability of polymorphs and co-crystals. 
For the purpose of this discussion let’s assume that we can calculate Etot in eq. (1) from a 
pseudoatom model (or even X-ray constrained wavefunctions) for any pair of molecules A and B 
in a crystal. This requires accurate calculation of Eele(polarized), as well as some choice of atom-
atom potential to approximate the dispersion and repulsion energies. Then the lattice energy can 
be computed via a sum of pairwise energies: 

Elat = 1
2 Etot

AB

RAB<R
∑ . (5) 

This can be related to the sublimation enthalpy by taking into account the electronic relaxation 
energy associated with the crystal to gas transition, as well the difference between vibrational 
energies for the two phases, 

ΔHsub(T ) = −Elat +ΔErel + ΔEvib + 4RT , (6) 

and this can be (reasonably well[20]) approximated by  

ΔHsub(T ) = −Elat +ΔErel − 2RT . (7) 

The important point here is that for crystals where little molecular geometry change occurs 
between crystal and gas phase, the sublimation enthalpy is a positive quantity, whose magnitude 
at room temperature is ~5 kJ mol–1 greater than that of the lattice energy. This means we have a 
very useful primary benchmark against which to validate lattice energies (and by inference, 
pairwise interaction energies) derived from X-ray diffraction data – bearing in mind of course 
the inherent experimental errors of ~5 kJ mol–1 or more in these thermodynamic measurements.  
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CrystalExplorer model energies 
Although the latest compilations of phase transition enthalpies are comprehensive, sublimation 
enthalpies are not always available for the molecular crystals of interest. However, we can use 
CE-B3LYP lattice energies as secondary benchmarks where sublimation data are lacking. And we 
can also potentially use the individual energy components in the CE-B3LYP model to tell us 
something about the “experimental” electrostatic energy. 
CE-B3LYP model energies[21] incorporated in CrystalExplorer[22] utilise B3LYP/6-31G(d,p) 
quantum mechanical charge distributions for unperturbed monomers, and separate the 
interaction energy between pairs of molecules or ions into electrostatic, polarization, dispersion 
and exchange-repulsion terms, much like eq. (1): 

Etot = keleEele + kpolEpol + kdisEdis + krepErep . (8) 

Here  is the same as in eq. (1), and E  is a sum of terms of the kind Eele pol − 1
2αF 2, where   are 

isotropic polarizabilities and F the electric field magnitude computed at each atomic nucleus 
resulting from the charge distribution of the other monomer. Details of the other terms are given 

elsewhere[21,23] and optimum values of the scale factors , etc. in eq. (8) were determined by 
calibration against counterpoise-corrected B3LYP-D2/6-31G(d,p) interaction energies for a large 
number of molecule/ion pairs. The mean absolute deviation (MAD) of these CE-B3LYP model 
energies from the DFT benchmark values is 2.4 kJ mol

kele

–1 for energies of molecule/ion pairs that 
span a range of 3.75 MJ mol–1.[23] The same model energies yield lattice energies with a MAD 
from benchmark values of only 6.6 kJ mol−1.[24]  

Comparison between experimental and CE-B3LYP lattice energies 
Table 1 compares lattice energies reported using the EP/MM approach in XD for the 
electrostatic energy (and atom-atom potentials, as indicated) with CE-B3LYP lattice energies 
based on the crystal structures tabulated. Experimental sublimation enthalpies are also given for 
a subset of results.  
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Figure 1. Experimental lattice energies compared with CE-B3LYP results from Table 1. The solid line is a linear 
regression, and the dashed line has unit slope, passing through the origin. Nominal uncertainties of ±10 kJ mol–1 are 
indicated for both quantities. 

From Table 1 we see that CE-B3LYP lattice energies are consistent with sublimation enthalpies, 
bearing in mind the inherent errors in both quantities, and the fact that the relaxation energy has 
been ignored in these CE-B3LYP estimates.  
Figure 1 shows that (superficially at least) the experimental and CE-B3LYP lattice energies are 
poorly correlated. Almost all experimental lattice energies are greater in magnitude than CE-
B3LYP results (i.e. they lie above the dashed line in the figure) – and sometimes much greater. 
The exceptions are forms I, II and IV of sulfathiazole, and pyrazinamide (and for which the 
difference is likely to be within experimental error), and form II of the (4HBA)2(44BP) co-crystal. 
The difference between the results for the (4HBA)2(44BP) co-crystal form II is 248 kJ mol–1, well 
outside any reasonable experimental error, and it merits closer inspection as the difference for 
4,4’-bipyridine (44BP) in the same publication[4] is 212 kJ mol–1, but of opposite sign. A plausible 
explanation is that these values do not properly reflect the stoichiometry of these two crystals. 
44BP (HIQWEJ03) has two molecules in the asymmetric unit, and the chemical formula for 
44BP is reported incorrectly in the original work as C20H16N4, rather than C10H8N2. But it makes 
no sense to report a lattice energy per two identical molecules, as this ignores the connection 
with the sublimation process, where the molecules are indistinguishable in the gas phase.  
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Table 1. Lattice energies (kJ mol–1) estimated from X-ray diffraction data compared with CE-B3LYP model energies and 
experimental sublimation enthalpies, where available.†

compound exp-6 
potential 

CSD refcode experiment Elat CE-B3LYP Elat subH 

dimethyl 3-(4-nitrophenyl) aziridine-
2,2-dicarboxylate [25] 

W&C WIGJAY01 –178 –163 

dimethyl 2-(4-nitrophenyl) ethene-
1,1-dicarboxylate [25] 

W&C XOCYOE –182 –145 

(±)-8’-benzhydrylideneamino-1,1’-
binaphthyl-2-ol [26] 

W&C WUFJOW01 –274 –188 - 

oxirane [27] W&C DUFBOV11 –51 –43 41 [28] 
dimethyl oxirane-2,3-dicarboxylate [27] W&C EYIJAY –106 –105 - 
dimethyl 3-(4-nitrophenyl) oxirane-
2,2-dicarboxylate [27] 

W&C XOCYUK –192 –151 - 

oxirane-2,2,3,3-tetracarbonitrile [27] W&C TCYNEO04 –101 –85 - 
sulfathiazole form I [29] W&C SUTHAZ43 –183 –206 - 
sulfathiazole form II [29] W&C SUTHAZ30 –205 –218 - 
sulfathiazole form III [29] W&C SUTHAZ33 –230 –219 - 
sulfathiazole form IV [29] W&C SUTHAZ36 –206 –218 - 
sulfathiazole form V - SUTHAZ05 - –202 - 
pyrazinamide [30] S PYRZIN22 –99 –110 116(4) 

[19a] 
rubrene  (100 K) [31] W&C QQQCIG17 –264 –218 181 [32] 
rubrene (20 K) [31] W&C QQQCIG23 –268 –220 181 [32] 
carbamazepine form III [33] ? CBMZPN22 –230 –152 - 
 -piroxicam [3] ? BIYSEH14 –304 –161 - 
piroxicam monohydrate [3] ? CIDYAP05 –571 –329 - 
                      (4HBA) [4] S JOZZIH01 –181 –137 117(4) 

[19a] 
4,4’-bipyridine (44BP) [4] S HIQWEJ03 –311 –99 106(3) 

[19a] 
(4HBA)2(44BP) co-crystal form II [4] S EPUPUB03 –138 –386 - 
(4HBA)2(44BP) co-crystal form I - EPUPUB - –396 - 
paracetamol (PCM) [5] ? HXACAN07 –189 –138 126(6) 

[19a] 
(PCM)(44BP) co-crystal [5] ? MUPQAP –271 –246 - 
benzene [25]  W&C ‡ –56 –48 45[32] 

† All experimental results employed the EP/MM approach in XD for the electrostatic energy, and atom-atom potentials, 
usually from either Williams and Cox[9] (W&C) or Spackman[8] (S), for dispersion and exchange-repulsion energies. The 
experimental values tabulated are unchanged from those reported in the original publications. CE-B3LYP lattice energies 
are based on the crystal structures indicated.  

‡ Based on X-ray data and crystal structure reported in ref. [34]. 
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The co-crystal form II (EPUPUB03) has formula C10H8N2.2(C7H6O3), but the asymmetric unit 
consists of one molecule of 4HBA and one-half of a 44BP molecule. 
With reference to the sublimation process, one mole of the co-crystal will generate two moles of 
molecules of 4HBA and one of 44BP. This is rather confusing, but it makes more sense if we 
consider the hypothetical chemical process: 
 44BP(s) + 2 x 4HBA(s)  (4HBA)2(44BP)(s)  ΔElat

Assuming no changes in molecular geometries, we would expect this process to be accompanied 
by a lowering in intermolecular energy, i.e.  Elat < 0.  
 Elat(form II) = Elat((4HBA)2(44BP)) – [2Elat(4HBA) + Elat(44BP)] 
           = –386 –[2(–137) + –99)]      = –13 kJ mol–1 using CE-B3LYP results 
           = –138 –[2(–181)  + –311)]   = +535 kJ mol–1 using experimental results 
This makes it clear that the experimental lattice energies must be incorrect.  
We can push this discussion a little further by using CE-B3LYP energies to compare the relative 
stabilities of forms I and II of the (4HBA)2(44BP) co-crystal.  
ΔElat(form I)  = –396 –[2(–137) –99)] = –23 kJ mol–1 using CE-B3LYP results from Table 1, 
suggesting that form I is more stable than form II, and this agrees nicely with experimental 
observations.[35] A similar analysis of the paracetamol (PCM) co-crystal with 44BP yields ΔElat = 
+229 kJ mol–1 from experiment,[5] but –9 kJ mol–1 using CE-B3LYP results. 

Comments on the experimental electrostatic energy 
The systematic overestimate of the lattice energy from experimental electron distributions 
provides a clue to a possible origin in the electrostatic term. As noted earlier, Eele(polarized) is 
actually closer to the sum of Eele + 2Epol than it is to Eele + Epol, and certainly greater in magnitude 
than Eele. Fortunately, most publications of experimental lattice energies also report the 
electrostatic term, and we can use these results to explore this overestimate – see Figure 2. 

 

Figure 2. Electrostatic components of ten experimental lattice energies[25,27,30-31] compared with the CE-B3LYP sum of 
scaled components Eele + 2Epol. Nominal uncertainities of ±10 kJ mol–1 are indicated for both quantities. 
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In this figure I have chosen to use the most reliable (in my opinion) experimental estimates, and 
exclude results where the stoichiometry made little sense (as discussed above). Error estimates in 
the experimental quantities were not reported, but they are likely to be ~10 kJ mol–1. The line of 
best fit passing through the origin suggests that the experimental electrostatic energy correlates 
strongly with the sum of Eele + 2Epol from CE-B3LYP lattice energies. Note that the figure plots 
the sum of scaled CE-B3LYP energy terms, giving a MAD of 9 kJ mol–1, but unscaled terms yield 
a similar result of 11 kJ mol–1. This suggests that the CE-B3LYP Epol energy is a rough measure of 
the overestimate in the true electrostatic energy when calculated using polarized charge 
distributions. Representative values of Epol are ~2 kJ mol–1 for benzene, ~9 kJ mol–1 for rubrene, 
~11 kJ mol–1 for oxirane-2,2,3,3-tetracarbonitrile and ~22 kJ mol–1 for dimethyl 3-(4-
nitrophenyl)aziridine-2,2-dicarboxylate. 

Comments on the atom-atom potentials 
This analysis of electrostatic energies can partly explain the apparent experimental overestimate 
of lattice energies (and a possible correction for that), but we also need to examine the different 
atom-atom potentials used to provide corresponding estimates of dispersion and exchange-
repulsion energies.  
The “Williams & Cox” atom-atom (nonbonded) potentials were originally derived by fitting to 
oxohydrocarbon[36] and azahydrocarbon[9] crystal structures, using atomic point charges to 
represent the electrostatic energy. Different refinements of these exp-6 potentials have been 
used extensively in crystal structure prediction by Sally Price, Graeme Day and co-workers, and a 
recent publication[37] summarizes the differences between the versions, and makes it clear that 
different versions are appropriate for different descriptions of the electrostatic energy: 
distributed atomic multipoles vs atomic point charges fitted to the molecular electrostatic 
potential. The precise “Williams & Cox” atom-atom potential terms used in XD are those for H, 
C, N and O reported in refs. [9,36].  
In the atom-atom potentials that I reported in 1986,[8] the exchange-repulsion terms were 
obtained using a rather simple density functional approach based on spherical atomic 
(promolecular) charge distributions. Empirical C6 dispersion coefficients available at that time 
were added to yield a consistent set of exp-6 potentials for pairs atoms up to and including Br. 
These were successfully applied to obtain geometries, interaction energies, force constants and 
vibrational frequencies of hydrogen bonded dimers of small linear molecules,[38] but it is 
important to recognise some of the assumptions in that work that may have been overlooked: 
1. The expression for the exchange-repulsion energy in ref. [8] actually includes the 

electrostatic interaction between spherical atomic charge densities, E . ele
pro−pro

2. Because of 1. only the use of point atomic multipoles to compute the electrostatic 
component of the total interaction energy makes sense, along with an estimate of E  
(labelled E

ele
pro-def

pen in ref. [38]). 
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3. The repulsion part of the exp-6 potential for a hydrogen atom involved in a hydrogen bond 
is set to zero. 

Points 1. and 2. above imply that the “Spackman” exp-6 potentials should not be used in 
combination with experimental electrostatic energies computed with the EP/MM approach (or 
any other essentially exact method). And point 3. is problematic for general application to 
molecular crystals, as it requires making assumptions about which atoms are hydrogen bonded, 
and which are not. 
From this analysis is seems that neither the “Williams & Cox” or “Spackman” exp-6 potentials 
are ideally suited to providing dispersion and exchange-repulsion energies that complement 
experimental electrostatic energies calculated by accurate methods. This then clearly identifies a 
need to develop an appropriate set of nonbonded potentials for this purpose. I am aware of one 
attempt to modify the “Spackman”  
exp-6 potentials by fitting to ab initio repulsion energies and experimental dipole oscillator 
strength distributions (for the C6 dispersion coefficients), but the results have not been reported 
in detail.[14c]  

Concluding remarks 
These lecture notes are necessarily brief, and relatively succinct, but they will be discussed in 
greater depth in the lecture. The take home messages are relatively straightforward: 
• The calculation of intermolecular interaction energies – and lattice energies – as an 

outcome of experimental charge density analysis is still in its infancy.  
• Future calculations of this kind must acknowledge that the electrostatic energy calculated 

between polarized molecules does not simply “include the effects of polarization”; it 
actually overestimates them, sometimes by a large margin. 

• Improvements must be made to the nonbonded atom-atom potentials used to approximate 
the dispersion and repulsion energies. A first step in this direction may be to use dispersion 
models such as the simpler D2 model due to Stefan Grimme.[39] 

• Realistic estimates of the experimental error in the computed experimental electrostatic 
energy are not just desirable – they are essential in order to obtain results that are more 
than just numbers in a table. 

• Ignoring basic thermochemical knowledge in presenting and discussing the experimental 
energies is unacceptable. The relationship of lattice energies to experimental sublimation 
enthalpies, and the widespread availability of the latter quantities, needs to be exploited as 
much as possible. And if experimental values make little sense compared with PIXEL or 
CE-B3LYP results, that discrepancy is surely telling us something important. 

These notes have focused on multipole-refined model electron distributions, which have well 
known limitations that give rise to unavoidable systematic errors (and which can be hard to 
quantify). Would the situation described above be improved if instead we used X-ray 
constrained wavefunctions to compute all quantum mechanical-based energy terms 
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(electrostatic, polarization, exchange-repulsion), and couple those with a modern model of the 
dispersion energy? 
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Non-empirical distributed intermolecular force-fields for 
organic energetic materials

Alexander A. Aina1, A.J. Misquitta2, S.L. Price1 
1Dept of Chemistry, Univ. College London, London, UK 
2School of Physics and Astronomy, Queen Mary, Univ. of London, London, UK

An approach to deriving anisotropic atom-atom force-fields, 
using distributed atomic multipoles, polarizabilities and 
dispersion coefficients and an anisotropic atom-atom repulsion model derived 
from SAPT(DFT) dimer calculations, is being developed for use in predicting 
organic crystal structures and polymorphs. We show that this distributed 
intermolecular force-field (DIFF) models the experimental crystal structures of 
pyridine well, but raises questions about the importance of many-body terms, 
thermal expansion and zero-point vibrational effects.1 The DIFF model was able 
to identify the structure of an unreported high pressure phase of pyridine in a 
crystal structure prediction study, unlike an empirically fitted potential. This 
shows the importance of non-empirical methods for modelling the high-pressure, 
high-temperature phases of organic explosives. To extend this methodology 
to energetic materials such as TNT and RDX, the effect of the variations in 
the NO2 conformation on the intermolecular forces is also investigated, as the 
conformation can differ significantly between polymorphs. There are significant 
changes in the charge distribution with conformation, which are reflected in the 
atomic multipoles and affect the electrostatic potential around the molecule and 
hence the lattice energy. Proposed links between the electrostatic properties of a 
molecule and the observed impact sensitivities of its crystals are also investigated. 
(© British Crown Owned Copyright 2018/AWE)

(1) Aina, A. A.; Misquitta, A. J.; Price, S. L. From dimers to the solid-state: Distributed 
intermolecular force-fields for pyridine. The Journal of Chemical Physics 2017.
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In situ investigation of milling reactions and structure 
determination of the products using X-ray diffraction

Irina Akhmetova1, F. Emmerling1, K. Rademann2, C. Roth3 

1BAM Federal Inst. for Materials Research and Testing, Berlin, Germany 
2Dept of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany 
3Inst. for Chemistry and Biochemistry, Freie Univ. Berlin, Berlin, Germany

Mechanochemistry is a versatile approach for green and fast 
synthesis of pure substances. By milling the reactants, various organic, inorganic, 
and metal-organic compounds can be obtained in high yields. Although 
mechanochemistry is widely used, the underlying mechanisms are not fully 
understood making mechanochemical reactions difficult to predict. Metal 
phosphonates are metal-organic compounds accessible by grinding. Because of 
their structural diversity, the exploration of the chemistry of metal phosphonates 
has gained considerable interest during the last decades. Transition metal 
phosphonates are promising candidates for an application as electrocatalysts in 
oxygen evolution reaction (OER). Here, we present the in situ investigation of 
the mechanochemical synthesis of a manganese(II)-phosphonate by synchrotron 
X-ray diffraction and thermography. The product has not been obtained by 
classical solution chemistry before and its crystal structure was determined 
from PXRD data. The milling process can be divided into different steps, with 
the product crystallization corresponding with the highest temperature rise. The 
activity of this metal phosphonate towards OER was measured and is presented 
here.
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Quantifying intermolecular interaction in crystals using 
Roby-Gould bond indices

Khidhir Alhameedi1,2, A. Karton1, D. Jayatilaka1, S.P. Thomas1 

1School of Molecular Sciences, Univ. of Western Australia, Crawley, WA, 
Australia 
2Dept of Chemistry, College of Education for Pure Science, Univ. of Karbala, 
Karbala, Iraq

Identifying the nature of intermolecular interactions in crystals 
and quantifying their relative strengths is significant in the context of crystal 
engineering. The question whether these interactions are formed as a result of 
molecule······molecule close packing or localized atom······atom interactions is a 
matter of debate. In this study, we evaluate the covalent, ionic and total Roby-
Gould bond index for ’σ-hole’ interactions (halogen bonding and chalcogen 
bonding) in comparison with well-known classical hydrogen bonds. The Roby-
Gould bond indices have been analyzed for a dataset of 97 crystal systems 
comprising 42 hydrogen bonds, 31 halogen bonding, and 33 chalcogen bonding. 
Our method provides insights into the nature of these interactions by separately 
estimating the bond indices for molecule······molecule and atom······atom. Hirshfeld 
charge for these interactions has been also reported with a trend of charge 
transfer from bond acceptor to the donor. A conservation law of the bond order 
involving the interacting atoms has been found with our Roby-Gould bond index.
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HAR-ELMO - Fast and accurate Hirshfeld Atom Refinement

Lorraine Andrade Malaspina1, A. Genoni2, D. Jayatilaka3, 
S. Grabowsky1 
1Inst. of Inorganic Chemistry and Crystallography, Univ. of Bremen, Bremen, 
Germany 
2Laboratory of Theoretical Physics and Chemistry, CNRS & Univ. of 
Lorraine, Lorraine, France 
3School of Molecular Sciences, Univ. of Western Australia, Crawley, WA,   

  Australia

The most widely used model nowadays for structure refinement based on X-ray 
diffraction data is the Independent Atom Model (IAM) due to its simplicity, 
speed/cost and reliability. In the IAM, atoms are considered to be spherical and 
non-interacting. Consequently, H atom positions (and bond lengths) derived from 
X-ray IAM are questionable and the obtained molecular electron density lacks 
chemical features. 
The use of more advanced models for structure refinement which include 
asphericity shifts for atoms in molecules significantly improve X-H bond lengths 
and give access to chemically meaningful electron density, such as the multipole 
model [1] and Hirshfeld Atom Refinement [2,3].We will show how HAR uses 
tailor-made aspherical atomic scattering factors from molecular wavefunction 
calculations in a regular least-squares refinement procedure. However, this 
procedure can be very time-consuming. Only if the computational cost of HAR 
can be significantly reduced, its application to bigger and heavier systems will 
become feasible. 
Extremely localized molecular orbitals (ELMOs) [4] can be used for a database-
like transfer of fragment-localized orbitals, therefore expanding the regime 
of HAR refinement since the molecular wavefunction could be obtained 
almost instantaneously. The use of ELMOs in structure refinement has never 
been considered until now. Here, we combine HAR and ELMO and present 
benchmarking tests on the compounds glycyl-L-alanine and L-alanine. We 
compare HAR-ELMO results especially for hydrogen atom parameters with HAR 
results and those obtained from neutron diffraction data on the same compounds 
at the same temperatures.

[1] N. K. Hansen and P. Coppens, Acta Cryst. A, 34, 909-921, (1978) 
[2] D. Jayatilaka and B. Dittrich, Acta Crystallogr. A, 64, 383-393, (2008). 
[3] S. C. Capelli, et. al., IUCrJ, 1, 361-379, (2014). 
[4] Genoni et al. – in preparation
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Temperature dependence of crystal packing without phase 
transition in a siloxanol

Justin Bergmann1, M. Fugel1, R. Pal1, M.F. Hesse1, S. Mebs2, 
J. Beckmann1, P. Luger3, S. Grabowsky1 
1Inst. of Inorganic Chemistry and Crystallography ,Univ. of Bremen, Bremen, 
Germany 
2Inst. of Experimental Physics, Freie Univ. Berlin, Berlin, Germany 
3Inst. of Chemistry and Biochemistry - Inorganic Chemistry, Freie Univ. 
Berlin, Berlin, Germany

In this study, we investigate the crystal structures of a siloxanol with a rare 
intermolecular hydrogen bond.[1] The crystal packing shows significant changes 
upon variation of the temperature in the range from 20 K to 293 K without 
undergoing phase transition. In order to investigate the origin of these changes, 
we considered effects of the electrostatic, polarization, dispersion, and exchange-
repulsion energies on the crystal packing using CrystalExplorer model energies.
[2] Due to the fact that the hydrogen bond has a high impact on the intermolecular 
interaction energies, an accurate description of the hydrogen position is 
indispensable. However, the Independent Atom Model only gives an insufficient 
description of the hydrogen position, and we could not find any correlations 
between the packing energies and the hydrogen bond geometry. However, after 
a Hirshfeld Atom Refinement,[3] which is known to yield accurate hydrogen atom 
positions, such correlations were obtained.

References 
[1] S. Grabowsky, M. F. Hesse, C. Paulmann, P. Luger, and J. Beckmann. How to make the ionic 
Si – O bond more covalent and the Si – O – Si linkage a better acceptor for hydrogen bonding. 
Inorg. Chem., 48(10):4384–4393, 2009. 
[2] M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman: Accurate and Efficient Model 
Energies for Exploring Intermolecular Interactions in Molecular Crystals. J. Phys. Chem. Lett., 
2014, 5, 4249 
[3] S. C. Capelli, H.-B. Bürgi, B. Dittrich, S. Grabowsky, D. Jayatilaka: Hirshfeld atom refinement. 
IUCrJ, 2014, 1, 361-379.
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Wet, moist or dry: Bibridged (CdCl3)- chains with a range of 
aqua ligand coordination

Marcus Bond, V. Buddeneni, S. Nalla 
Dept of Chemistry, Southeast Missouri State Univ., Cape Girardeau, MO, USA

The [CdCl3(H2O)-]n chain, an established feature of 
chloridocadmate structural chemistry, consists of edge-sharing, 
di-μ2-chlorido CdCl5(H2O) octahedra that are are also linked 

by intrachain O-H…Cl hydrogen bonds that cause canting of octahedra off of the 
chain axis. A wealth of other hydrogen bonding opportunities—i.e. interchain 
O-H…O or Cl, or organoammonium cation N-H..O or Cl — are often found. We 
present here the “wet” chain structure found in (3-bromopyridinium)CdCl3(H2O) 
which is distinguished by a firmly coordinated aqua ligand and one of the longest 
terminal Cd-Cl bond lengths known. Multiple interchain O-H and bifurcated 
N-H hydrogen bonding to the terminal chloride then knit the chains together 
into layers. The “moist” chain structure in (3,5-dimethylpyridinium)2CdCl3(H2O) 
contains the longest known Cd-OH2 bond and the shortest known terminal Cd-
Cl bond. In this case a short, direct N-H hydrogen bond to the aqua ligand with 
no hydrogen bonding to the terminal chloride contribute to this unusual bonding 
arrangement. Furthermore, this structure is polar (P21) by virtue of identical 
canting of terminal ligands on parallel chains, and suggest an application as a 
binary switch. Finally, the “dry” chain structure in (1,3,4-trimethylpyridindium)
CdCl3 does not have an aqua ligand present, and terminal chloride ligands are 
staggered along the chain axis to generate a “ladder pole” structure. In contrast to 
other “ladder pole” chain structures, in which hydrogen bonding to the terminal 
ligand is used to justify formation of the di-μ2-halido bridged chain over the 
tri-μ2-halido bridged chain, the quaternary cation is incapable of N-H hydrogen 
bonding. Computational problems of interest in these structures are (1) the energy 
barrier for switching polarity in the hydrate chains, (2) energetics and bonding 
of gradual aqua ligand removal, and (3) stability of the anhydrous di-μ2-halido 
bridged chain vis-a-vis the tri-μ2-halido bridged chain.
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Extension of UBDB databank towards accurate electrostatic 
energy calculations 
for interactions between RNA and proteins through 
magnesium ions

Urszula Anna Budniak, P. M. Dominiak 
Biological and Chemical Research Centre, Dept of Chemistry, Univ. of 
Warsaw, Warsaw, Poland

Electrostatic energy is an appropriate tool for estimating interaction energy in 
biomacromolecules. One of the more advanced methods to calculate electrostatic 
interaction energy is University at Buffalo Pseudoatom DataBank (UBDB) used 
together with Exact Potential Multipole Method (EPMM). Calculations are 
based on the structures deposited in Protein Data Bank (PDB). UBDB enables 
reconstruction of charge density for macromolecules in quantitative manner. 
By UBDB+EPMM approach, which takes also charge penetration effects into 
account, it is possible to compute electrostatic energies with similar accuracy 
as with quantum chemistry methods, for wide range of types of interactions 
(hydrogen bonds, π-π stacking) and distances. 
The aim of my current project is to characterize electrostatic interactions in 
selected complexes of IFITs proteins with RNA with the use of the UBDB. IFIT5 
proteins interact with pppRNA through magnesium ions. UBDB already contains 
many atom types including those present in amino acids and nucleotides residues, 
however it does not yet cover all necessary atoms of complexes containing cations 
e.g. Mg2+. For accurate calculations, all atom types must be represented in UBDB. 
I would like present how new atoms are generally added and how the procedure 
was adapted to achieve my aim. Next I will show how to reconstruct the charge 
density and calculate the electrostatic interaction energy of exemplary IFIT5-
pppCCCC complex. Using UBDB it is also possible to create deformation density 
maps and electrostatic potential maps.

Project was financed from the grant PRELUDIUM11 of National Science Centre, 
Poland nr 2016/21/N/ST4/03722.

Abbas YM et al. (2013) Nature 494 (7435), 60-64. 
Jarzembska KN, Dominiak PM (2012) Acta Cryst. A68, 139–147. 
Kumar P et al. (2014) J. Chem. Theory Comput. 10, 1652−1664. 
Volkov A, Koritsánszky TS, Coppens P (2004) Chem. Phys. Lett. 391, 170–175.
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Interaction energy calculations for hydrates of 
hypoxanthinium nitrate

Malgorzata K. Cabaj, P.M. Dominiak 
Biological and Chemical Research Centre, Univ. of Warsaw, Warsaw, Poland

Two hydrates of hypoxanthinium nitrate were measured at 
different temperatures ranging from approximately 20 K to 
room temperature. The numerous datasets were refined with 

CrysAlis and Olex2. Geometry optimization, crystal energy, and theoretical 
structure factors were calculated using Crystal09. 
The hypoxanthinium nitrate monohydrate structures exhibit interesting behavior. 
The first polymorph crystallizes in Pmcn group in orthorhombic crystal system, 
which has already been reported [1], [2]. Cooling crystal caused it to undergo a 
phase transition at ca. 233 K, resulting in monoclinic phase non-merohedrally 
twinned by two-fold axis. 
The second hydrate contains a very rare occurrence of H3O

+ cation interacting 
with H2O and NO3

-. 
In our work, we wish to present an extensive comparative study of all the 
measured structures with analysis of the energies of interactions and geometry of 
the crystal packing.

[1] Rosenstein, R. D. et al., (1982). Cryst. Struct. Commun. 11, 1507-1513. 
[2] Schmalle H. et al., (1990). Acta Cryst. C46, 340-342.
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The influence of charge distribution on the modelling of co-
crystal drug formulation

Joseph Cadden1,2, S. Aitipamula1, S.J. Coles2 
1Crystallization and Formulation Science, Inst. of Chemical and Engineering 
Sciences, A*STAR (Agency for Science, Technology and Research), Jurong 
Island, Singapore 
2Chemistry, Faculty of Natural and Environmental Sciences, Univ. of 
Southampton, Southampton, UK

The use of co-crystals in the pharmaceutical industry has gained considerable 
interest in the past decade due to their ability to improve the physiochemical 
properties of APIs, such as solubility, stability and bioavailability without affecting 
covalent bonds, or hindering pharmacological activity.1,2 
However, the understanding of structure-property relationships, particularly 
within drug formulations, is limited hence studying the impact of excipients on 
co-crystal performance would prove valuable. To fully understand the effect of co-
crystal excipient interactions upon the physiochemical properties, the combination 
of computational and experimental approaches has shown to be effective. 
We present a co-crystal of the low-solubility API Telmisartan with saccharin, 
whose nature has been confirmed using PXRD, SCXRD and thermal analysis. 
TEL-SAC is known to exhibit significantly higher solubility than the parent API 
and is stable up to 6 hours in vitro.3 We aim to incorporate MD simulations to 
model distribution of co-crystal particles within a formulation and from this 
predict the solubility and dissolution rate of the TEL-SAC co-crystal formulation, 
comparing with the experimental results. Successful prediction will also provide 
an opportunity to evaluate favourable cocrystal-excipient combinations. 
Quantum-crystallography will also serve to complement the MD work. Currently, 
MD simulations provide a distribution of particles within a system, from which 
certain properties can be calculated, such as dissolution rate and solubility. 
However, these are based on atomic-resolution crystal structure data obtained 
from the CSD. Our target is to perform high-resolution charge-density analysis 
to enable calculation of a greater range of characteristics of TEL-SAC, such as co-
crystal shape, density, electronic-distribution, and electrostatic potential. These 
can be used as improved input parameters for MD simulation calculations, thus 
increasing the accuracy of the model.

References 
1. Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Int. J. Pharm. 
2013, 453, 101-125. 
2. Blagden, N.; De Matas, M. Advanced Drug Delivery Reviews 2007, 59, 617-630. 
3. Chadha et al. CrystEngComm, 2014, 16, 8375-838
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A charge density study of a linear dialkyl Co(II) complex 
showing an unprecedented non-Aufbau electronic ground 
state

P.C. Bunting1, M. Atanasov2,3, Emil Damgaard-Møller4, 
M. Perfetti5, I. Crassee6, M. Orlita6,7, J. Overgaard4, 
J. van Slageren5, F. Neese2, J.R. Long1,8,9 

1Dept of Chemistry, Univ. of California, Berkeley, CA, USA 
2Max-Planck Insit. für Kohlenforschung, Mülheim an der Ruhr, Germany 

        3Inst. of General and Inorganic Chemistry, Bulgarian Academy of Sciences,  
        Academy Georgi Bontchev, Sofia, Bulgaria 
        4Dept of Chemistry & Centre for Materials Crystallography, Aarhus Univ.,  
        Aarhus, Denmark 
        5Inst. für Physikalische Chemie, Univ. Stuttgart, Stuttgart, Germany 
        6Laboratoire National des Champs Magnétiques Intenses, Grenoble, France 
        7Inst. of Physics, Charles Univ., Prague, Czech Republic 
        8Dept of Chemical and Biomolecular Engineering, Univ. of California,   
        Berkeley, CA, USA 
        9Materials Sciences Division, Lawrence Berkeley National Laboratory,   
        Berkeley, CA, USA

Recently the first linear dialkyl Co(II) complex has been synthesized by the 
Long group, on which ab initio calculations indicated a non-Aufbau electronic 
ground state (dx2-y2, dxy)

3(dxz,  dyz)
3(dz2)

1. In the pursuit of confirming this abnormal 
electronic ground state, a variety of techniques have been used, including an 
experimental charge density study. 
The data for the charge density analysis was obtained on the beamline BL02B1 at 
SPring-8, Japan using 40 keV radiation and a temperature of 20K. The resolution 
was sin(theta)/lamda < 1.0 and provided 8836 unique reflections with an average 
redundancy of 2.4 and a completeness of 97.5%.  
For the charge density analysis, the Hansen-Coppens multipole formalism was 
used, from which a decent fit was obtained. The parameterized charge density 
enabled an analysis in the framework of quantum theory of atoms in molecules 
(QTAIM)  which showed no increased covalency for the Co-C bond compared to 
other Co-C bonds. Given little to no covalency of the Co-C, an estimation of the 
3d-orbital populations for the Co(II) ion could be obtained from the model. 
The 3d-orbital analysis showed a total of 9.5 3d electrons on the Co(II) ion, which 
is much more than the expected 7 3d electrons, but the distribution showed 
43.5% to be in the dx2-y2, dxy orbitals, 40.0% in the dxz, dyz orbitals, and 16.5% in 
the dz2 orbital. The obtained charge density thus supports the assertion of a non-
aufbau ground state. 
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General-unrestricted extremely localised molecular orbital 
(gELMO) wavefunctions for Hirshfeld atom refinement 
(HAR)

Max Davidson, D. Jayatilaka 
Dept. Molecular Sciences, Univ. of Western Australia, Crawley, WA, Australia

Currently, wavefunctions for proteins containing millions of 
atoms are extremely time consuming to calculate. In this poster 
we outline a potnetial solution to this problem and give preliminary results on 
small molecules for the gELMO approach. The key ideas involve the following: 
 
(1) Use of non-orthogonal molecular orbitals, localised to a given region described 
by a parameter, “b”. These can be localised to be atomic orbitals, allowing for a 
highly parallelisable procedure. 
 
(2) Limiting interactions to another region descibed by, “p”. This greatly reduces 
the number of required calculations and, hence, computation time. 
 
(3) Allowing the electron spin to be chosen variationally, to compensate for the 
strict conditions imposed by the gELMO approximation. 
 
With this atomic-wavefunction approach, applications to ab initio quantum 
crystallographic X-ray refinements, such as HAR, may be possible.
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Towards the study of heavy-element containing solids with 
the CRYSTAL program: developments and applications

Jacques K. Desmarais1,2,3, C. Ravoux1,4, K.E. El-Kelany1,5, 
R. Dovesi1, A. Erba1 
1Dip. di Chimica, Univ. di Torino, Turin, Italy 
2Dep. of Geological Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada 
3Dept of Physics and Engineering Physics, Univ. of Saskatchewan, Saskatoon, 
SK, Canada 

        4Laboratoire Structure Proprietes et Modelisation des Solides (SPMS),   
        CentraleSupelec, Batiment G. EIFFEL, Gif-Sur-Yvette, France 
        5CompChem Lab, Chemistry Dept, Faculty of Science, Minia Univ., Minia, Egypt

The CRYSTAL [1] code for quantum-mechanical simulations of periodic 
systems is based on a linear-combination of atomic-orbitals (LCAO) framework. 
Crystalline orbitals are expressed as a linear-combination of Bloch functions that 
are in turn defined using a basis-set of solid-spherical Gaussian-type functions 
(SGTF). In its initial version, the CRYSTAL code described the wavefunction as a 
linear-combination of s-, p- and d- type SGTF. The code was generalized to f-type 
functions in 2003. Here we generalize the code to g-type SGTF, which represents 
the first step towards a better description of systems containing heavy-elements. 
Among them are lanthanides and actinides, which have occupied 4f and 5f bands 
and the g-type functions represent the first polarisation shell. We develop new 
small-core pseudopotential basis sets of the form (11sp7d8f2g)/[4sp2d3f2g] for the 
lanthanide and actinide series in the solid state.  
 
The new code and basis sets are applied to the strongly-correlated lanthanide 
sesquioxides Ln2O3 series (Ln=La,Ce,Pr,Nd). We provide a detailed description 
of their geometric, electronic and magnetic structures using global-hybrid 
functionals. The critical role of the fraction of Fock exchange is addressed. In 
particular, a new theoretical approach based on a self-consistent definition - 
through the material’s dielectric response - of the optimal fraction of exchange in 
hybrid functionals [2] is applied for the frist time to strongly correlated materials. 
Our description of Ce2O3 is in agreement with the existing copious litterature on 
this system, which suggest that our description of the other members of the series 
is reliable, for which very little has been published before. 
 
1Dovesi R, Erba A, Orlando R, Zicovich-Wilson CM, Civalleri B,Maschio L, Rérat M, Casassa S, 
Baima J, Salustro S, Kirtman B (2018) WIREs Comput Mol Sci 
2 A. Erba, J. Phys.: Condens. Matter 29, 314001 (2017).
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Wavefunctions fitted to charge density data – exploring the 
effects of data quality and obtainable properties

Jonathan J. Du1, A. Genoni2, J. Overgaard3, D.E. Hibbs1 
1Faculty of Pharmacy, The Univ. of Sydney, NSW, Australia 
2CNRS & Univ. de Lorraine, Laboratorie LPCT, Metz, France 
3Dept of Chemistry, Center for Materials Crystallography, Aarhus Univ., 
Aarhus, Denmark

The fitting of a wavefunction to experimental diffraction data has 
long been considered as an alternative to the current multipole model in refining 
the charge density of crystal systems. Its primary advantage lies in its ability to 
obtain the density matrix and, above all, density matrix-related properties (such 
as the kinetic energy, Mayer bond orders and Weinhold population analysis) that 
the multipole model can only estimate. Other known issues associated with the 
multipole model, including the correlation between anisotropic displacement 
parameters (ADP’s) and multipole parameters and the presence of regions of 
negative density are also addressed using wavefunction-based methods. 
 
In this study, charge density data for the anti-epileptic drug carbamazepine were 
collected at the Faculty of Pharmacy at the University of Sydney at 150K and at 
the SPring-8 synchrotron facility at 20K. Three wavefunction fitting methods 
(Jayatilaka’s approach implemented in TONTO1, the XC-ELMO strategy by 
Genoni2 and the Molecular Orbital Occupation Number (MOON) refinement 
techniques by Hibbs et al.3) were used to generate wavefunctions fitted to 
experimental diffraction data for both the two data sets. This investigation 
examines the effect of data quality and choice of basis set used for the fitting 
process on the final obtained wavefunctions and compares the properties 
obtained from each method. The work aims at providing a concise summary of 
the benefits offered by each fitting method and a guide as to which method is 
best if a particular property of the charge density is desired. Further studies will 
be aimed towards finding the optimal functional and basis sets to be used for a 
variety of compounds including systems with Z’ >1 such as pharmaceutical co-
crystals.
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Bonding in polyiodides

Michelle Ernst, T. Poreba, P. Macchi 
Dept of Chemistry and Biochemistry, Univ. of Bern, Bern, Switzerland

We are studying the bond formation in polyiodides induced 
by applying pressure on a crystal. Besides the analysis of the 
structure obtained from X-ray diffraction we use various 
theoretical tools such as bond decomposition analyses and X-ray 

constrained wavefunctions (XCW). While traditional methods for the refinement 
of X-ray diffraction data, like for example the multipolar refinement, provide only 
information about the diagonal elements of the one-electron reduced density 
matrix (the electron density), the XCW method enables the calculation of the 
density matrices as well, although the physical meaning is not fully understood. 
XCWs are obtained by calculating a wavefunction which simultaneously 
minimizes the energy obtained as expectation value of the Hamilton operator and 
an agreement statistics obtained by comparing the calculated structure factors to 
the measured ones. 
 
Polyiodides form a very versatile class of compounds. Our model crystal consists 
of three iodine units (I2, I3

- and I2) forming a zig-zag chain. Studying this crystal 
under high pressure allows the observation of structural changes and bond 
formation within the very same crystal. 
X-ray diffraction measurements were done at different pressure points up to 
12 GPa. At ambient pressure the distance of the two I2 units to the I3

- unit is 
equivalent (and restricted by symmetry), around 6 GPa the crystal undergoes 
a phase transition which results in the formation of an I5

- and upon further 
compression an I7

- unit. However, no unique criteria for what is to be considered 
a bond exist. We used the EDA and IQA approaches together with other criteria 
such as the delocalization index and the Laplacian of the electron density 
to clarify the bonding situation. Additionally, orbitals obtained from XCW 
calculations were analysed in order to better understand the interactions that lead 
to the bond formation. 
In future we plan to use X-ray constrained ELMOs to localize orbitals on the 
interacting fragments.
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Quantum Crystallography put into action: assessing the 
accuracy of and getting insights on the electron spin 
densities

Carlo Gatti1,2, G. Macetti3 
1CNR-ISTM, Ist. di Scienze e Tecnologie Molecolari, Milan, Italy 
2Ist. Lombardo Accademia di Scienze e Lettere, Milan, Italy 
3Dip. di Chimica, Univ. degli Studi di Milano, Milan, Italy

Modelling magnetic properties of crystalline compounds by experiments is truly 
challenging.1 New methodological routes are now available to ease this task. 
By combining the information obtained by different techniques such as X-ray 
and polarized neutron diffraction2,3 or polarized neutron and X-ray magnetic 
diffraction,4 the limitation of the scarce number and resolution of experimental 
data is partly overcome. More precise wavefunction-based models or electron 
spin densities (SDs) are so obtained and comparison with exact wavefunctions or 
densities becomes  clearly advisable to test their accuracy. 
Ab-initio electron SDs can be easily calculated but they are usually far from being 
reliable. Systematic studies demonstrated that DFT is often unable to treat open-
shell systems properly, leading to non-accurate electron SDs.5,6 Ab-initio electron 
correlation methods or density-matrix renormalization group approaches,6 have 
to be called for. Yet, they are computationally too demanding and unsuited for 
large systems. Extraction of chemical information from the SD is not a trivial task 
as for the ED, even for very simple molecular systems.7 The concept of Source 
Function (SF)8 was thus purposely extended to SD distributions and applied to 
analyze the magnetic patterns in metal complexes molecular crystals.9,10 The SF 
SD serves as a useful tool for discussing the SD accuracy and to disclose the origin 
of  the SD discrepancies when approaches of increasing quality are used.

[1] A. Genoni et al., Chem. Eur. J. 10.1002/chem.201705952 
[2] M. Deutsch, et al., IUCrJ 2014, 1, 194 
[3] M. Deutsch et al., Acta Cryst. A 2012, 68, 675 
[4] I.A. Kibalin et al., Phys. Rev. B 2017, 96, 054426 
[5] K. Boguslawski et al., JCTC 2011, 7, 2740 
[6] K. Boguslawski et al., JCTC. 2012, 8, 1970 
[7] C. Gatti et al.,Chem. Sci. 2015, 6, 3845 
[8] R.F.W. Bader & C. Gatti, Chem. Phys. Lett. 1998, 287, 233 
[9] G. Macetti et al., J. Comp. Chem. 2018, 39, 587 
[10] C. Gatti et al., Acta Cryst B 2017, 73, 565
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Structural analysis of Bornite in the range 10 K-275 K: a 
synchrotron light and DFT investigation

Andrea Giaccherini1,2, A. Martinelli3, G.O. Lepore4, F. 
Bernardini5, F. Di Benedetto6 
1Dept of Earth Sciences, Univ. of Florence, Florence, Italy 
2Dept of Chemistry, Univ. of Florence, Sesto Fiorentino, Italy 
3SPIN-CNR, Genoa, Italy 
4IOM-CNR, European Synchrotron Radiation Facility 71, Grenoble, France 

        5Dept of Physics, Univ. of Cagliari, Monserrato, Italy

Bornite is a widespread sulfide mineral with nominal composition Cu5FeS4 
perfectly fitting the appealing characteristics of technologically relevant 
multinary sulphides for thermoelectric (TE) technology. Bornite has a recent 
history of success due to its interesting properties, non-toxicity and earth-
abundance of its constituting elements. During the last 40 years, its structure was 
the subject of several investigations at different temperatures with no conclusive 
structural determination of its polymorphs. In particular, several works suggest 
a structural ordering of Fe(III) in two specific sites at room temperature, 
confirmation of these observation requires further investigation. To this aim, we 
improved the quality of the diffraction data available and attempted a further 
structural determination at cryogenic temperature. Specifically, we investigated 
a natural Bornite sample by means of high resolution synchrotron X-ray powder 
diffraction (XRD), pair distribution function (PDF) analysis and X-ray absorption 
spectroscopy (XAS) between 10 K and 275 K. The experimental data confirmed 
the Pbca space group and strongly supports the preferred location of Fe in bornite 
at 275 K. Regarding the changes at cryogenic temperature, we found that the unit 
cell volume decreases continuously with decreasing temperature, undergoing 
an abrupt contraction below ~65 K, where a 1st order Pbca → Pca21 structural 
transition takes place. The analysis of the vibrational mode yielded the primary 
active mode breaking the Pbca symmetry towards Pca21. The Pbca → Pca21 
structural transition was further investigated by first-principles calculations at 
DFT-PBE level of theory. Starting from the optimized structure only three phonon 
mode frequencies have been found lower than 5.6 THz with a finite imaginary 
component of about 6 THz. These modes distort the structure from Pbca to Pca21 
confirming the experimental findings.
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The riddle of helium arsenolite inclusion compound 
formation

Piotr Guńka1, M. Hapka2, M. Hanfland3, M. Dranka1, 
G. Chałasiński2, J. Zachara1 
1Faculty of Chemistry, Warsaw Univ. of Technology, Warsaw, Poland 
2Faculty of Chemistry, Univ. of Warsaw, Warsaw, Poland 
3European Synchrotron Radiation Facility, Grenoble, France

Investigations into the helium permeation of arsenolite, the cubic, molecular 
arsenic(III) oxide polymorph As4O6, were carried out to understand how and 
why arsenolite helium clathrate As4O6·2He is formed. High-pressure synchrotron 
X-ray diffraction experiments on arsenolite single crystals revealed that the 
permeation of helium into nonporous arsenolite depends on the time for which 
the crystal is subjected to high pressure and on the crystal history. The single 
crystal was completely transformed into As4O6·2He within 45 h under 5 GPa. 
After releasing the pressure, arsenolite was recovered and a repeated increase in 
pressure up to 3 GPa led to practically instant As4O6·2He formation. However, 
when a pristine arsenolite single crystal was quickly subjected to a pressure of 
13 GPa, no helium permeation was observed at all. No neon permeation was 
observed in analogous experiments. Quantum mechanical computations allow for 
the modelling of inclusion compound formation reaction enthalpy and indicate 
that there are no specific attractive interactions between He atoms and As4O6 
molecules at the distances observed in the As4O6·2He crystal structure. Detailed 
analysis of As4O6 molecular structure changes has shown that the introduction of 
He into the arsenolite crystal lattice significantly reduces molecular deformations 
by decreasing the anisotropy of stress exerted on the As4O6 molecules. This effect 
and the pΔV term, rather than any specific As···He binding, are the driving forces 
for the formation As4O6·2He.
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Expanding crystal structure prediction to larger and more 
flexible molecules of pharmaceutical interest

Luca Iuzzolino 
Dept of Chemistry, Univ. College London, London, UK

Crystal Structure Prediction (CSP) studies aim to predict 
all the thermodynamically plausible crystal structures of a 
molecule from the chemical diagram, and can be used in the 

pharmaceutical industry as a complement to the solid form screening work 
carried out in drug development. The industrial use of CSP is currently limited by 
the huge computational cost, which scales very badly with the size and flexibility 
of the molecule. Hence, we investigate methods to reduce the computational 
cost of CSP studies of large flexible molecules. Conformational information 
retrieved from the Cambridge Structural Database (CSD), including using the 
CSD Conformer Generator, can facilitate the exploration of the lattice energy 
(Elatt) surface for generating  millions of plausible crystal structures. Dispersion-
corrected tight-binding density functional theory (DFTB-D) can be used as an 
intermediate step to relax all inter and intra-molecular degrees of freedom of 
several thousands of approximate crystal structures generated in a search. This 
reduces the number and cost of the energy calculations that need to be performed 
with higher levels of accuracy. These methods are tested for five large flexible 
molecules by comparison with previous extensive CSP studies. The molecules 
include the anthelmintic drug mebendazole, where the original CSP study was 
recently performed to complement and guide an extensive polymorph screen. 
The revised methodology successfully generated and gave a good energy ranking 
to almost all the low-energy crystal structures found in the original CSP studies, 
including all experimental structures. This was achieved at significantly reduced 
computational cost compared with the original studies, and an analysis of the 
results of the tests suggests that the approach can be extended to larger and more 
flexible molecules.
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QM/MM-based structure and charge density analysis of 
Biomolecules: A new approach for drug design

Saravanan Kandasamy, K. Poomani 
Laboratory of Biocrystallography and Computational Molecular Biology, 
Dept of Physics, Periyar Univ., Salem, India

The favorable outcome of drug design depends on the 
intermolecular interaction between the target protein and ligand 
molecules. Here, the geometry of these interactions is being used to decide the 
strong and weak intermolecular interactions. Nowadays, the third generation 
high-throughput advanced crystallography techniques allow to investigate these 
interactions at electron density level using high resolution of X-ray diffraction. 
This electronic level information gives deeper understanding the structural 
facts with the position of hydrogen atoms and valence electron distributions; in 
particular, understanding the electronic properties of drug-receptor interactions 
is very much essential to elucidate the molecular mechanism. However, the high 
resolution of X-ray diffraction is becoming very common in small molecular 
charge density studies and it is not straightforward in protein-ligand complexes 
due to limited X-ray diffraction data and a large number of parameters. To make it 
very feasible, in the present study we adopted a QM/MM computational method, 
in which we considered the drug molecule and the interacting amino acids in 
the active site (binding pocket) as a QM region and the remaining part of the 
complex as an MM region. Since this model has a physiological relevance, we 
proceed to determine the structure, charge density distribution and topological 
properties of the intermolecular interaction of biomolecules in the active site 
of the proteins. This theoretical onsite charge density analysis of drug-receptor 
complex reveals the nature of charge density distribution of binding pocket using 
QM/MM method coupled with QTAIM analysis. Here, few drug molecules with 
corresponding enzymes against Alzheimer disease were investigated and the 
results will be discussed at the time presentation.
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The Quantum Crystallography of Sila-Ibuprofen and its 
application

Florian Kleemiss1, M. Fugel1, K. Sugimoto2, J. Beckmann1, 
S. Grabowsky1 
1Univ. of Bremen, Bremen, Germany 
2JASRI, SPRing-8, Hyogo Prefecture, Japan

We have synthesized the compound sila-ibuprofen and shown its 
promise in biochemical tests.  We characterized sila-ibuprofen in comparison to 
the most common anti-inflammatory painkiller, ibuprofen. To get an insight into 
the differences and similarities between common ibuprofen and sila-ibuprofen a 
series of quantum crystallographic analyses were performed: X-ray wavefunction 
refinement (XWR) [1] was carried out on high-resolution low-temperature 
diffraction data obtained at BL02-B1 of SPring-8 in Hyogo, Japan. It was 
followed by model energy analysis of the crystal packing [2] and Non-Covalent-
Interaction(NCI-)-plots. [3] This is necessary since classical structural refinements 
are neither capable of locating hydrogen atoms accurately, nor describing bonding 
effects such as electrostatic potentials. The effect of the crystal environment of a 
small biologically active ligand in the crystal packing of the pure substance on its 
electron density has been claimed to be a useful approximation of the polarization 
in the biological situation. [4] 
The structure and wavefunction obtained through XWR refinement were used 
to develop a force field to simulate the interactions of the substance in the active 
site of the enzyme using molecular dynamics. The results of these investigations 
show a strong correlation of properties observed in the crystal and obtained from 
simulations of the enzyme pocket. It might therefore explain the biochemically 
observable trends of activity exhibited by sila-ibuprofen.

[1] M. Woinska, D. Jayatilaka, B. Dittrich, R. Flaig, P. Luger, K. Wozniak, P. M. Dominiak, S. 
Grabowsky, Chem. Phys. Chem. 2017, 18, 3334–3351. 
[2] M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman, J. Phys. Chem. Lett. 2014, 5, 4249. 
[3] J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D.N. Beratan, W. 
Yang, J. Chem. Theory Comput. 2011, 7 (3), 625–632. 
[4] C. Pascard, Acta Cryst. D 1995, 51, 407-417.
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Influence of chosen synthons on the polarizabilities of 
functional groups

Anna Krawczuk 
Faculty of Chemistry, Jagiellonian Univ., Krakow, Poland

The correlation between the crystal structure and physical 
properties of a given material has long been a subject of 
many studies. One of the key features of designing efficient 
multifunctional materials is to use specific building blocks and/or synthons in 
order to increase a desired effect in the certain crystallographic direction. For 
example, to obtain efficient optical devices it is necessary to use highly polarizable 
functional groups which will promote high optical effect. It is thus crucial to 
get a precise information on how those group polarizabilities are influenced by 
common synthons used in crystal engineering.  
Recently developed routine, PolaBer1 allows us to calculate atomic polarizabilities, 
and therefore group polarizabilities, based on the definition of atomic dipole 
moments first given by Bader2 and developed by Keith.3 The routine uses the 
results of QTAIM partitioning of charge densities. According to QTAIM theory 
each atomic contribution can be expressed as a sum of atomic polarization 
mp(W) and charge translation mc(W) terms. The numerical derivatives of these 
quantities in respect to external electric field provide the atomic polarizabilities. 
The advantage of using atomic polarizabilities rather than molecular ones, is the 
fact that we can extract separate information about the atomic and intermolecular 
contribution into linear susceptibility. This, on the other hand, enables us to 
identify which group mostly contributes to the global dielectric constant, which 
in turn could be very helpful for the crystal engineering purpose when designing 
new optically effective materials.

References  
1 A. Krawczuk, D. Pérez, P. Macchi J. Appl. Cryst. 47 (2014) 1452-1458. 
2 R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, U.K., 1990. 
3 Keith, T.A. (2007) Atomic Response Properties in The Quantum Theory of Atoms in Molecules: 
From Solid State to DNA and Drug Design Matta C.F., Boyd R.J., Eds., Wiley-VCH, Weinheim, 2007.
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Combined spectroscopic and crystallographic studies of new 
photoswitchable Ni and Cu-based nitrosystems in the solid 
state

Sylwia E. Kutyla1, A. Krówczyński1, R. Kamiński1, 
D. Schaniel2, K.N. Jarzembska1 
1Dept of Chemistry, Univ. of Warsaw, Warsaw, Poland 
2CRM2, UMR 7036, Univ. de Lorraine, Vandoeuvre-les-Nancy, France

Stimuli-responsive chemical systems exhibiting specific photoactive properties 
have gained a lot of attention nowadays due to their potential technological 
applications (solar cells, LEDs, biological markers, ect.). It is, thus, of great 
importance to understand the phenomena behind the properties of interest, so as 
to design the desired materials and sensibly control their properties. 
Hence, the presented project has been dedicated to synthesis and crystallization 
of novel Ni and Cu nitro complexes, as well as their further detailed characteristic 
using X–ray diffraction and spectroscopic techniques. The studied systems were 
examined specifically for their ability to undergo the nitro group isomerisation. 
Conversion between different isomers can be achieved in two ways, thermally 
and/or via photo-activation. In the ground state the nitro group exhibits the nitro 
binding mode (η1-NO2) in the case of nickel complexes, whereas the nitrito (η1-
ONO) linkage in the copper analogues. 
So far, the most promising complex from the examined series, i.e. PhTNiNO2, 
(PhT = 2 - [8-quinolyloamino) methyl] 1-tetralone), exhibits full conversion when 
irradiated with the LED diode 590 nm (green light) or 660 nm (red light) at 160 K 
for 1 hour. Full conversion was earlier reported by Warren et al. [1], for only one 
Ni complex. It should, however, be stressed that the newly synthesized compound 
constitutes the first Ni-complex for which the metastable form is stable up to 240 
K (for comparison, the metastable state of Ni(dppe)(NO2)Cl is stable up to 150 K). 
Other nickel complexes analysed up to date exhibit comparable, but slightly worse 
properties. In turn, the copper systems work best at 10 K, whereas the metastable 
form is usually stable up to 50-80 K, which makes them more difficult to be 
analysed and less applicable materials.

Financial support from the PRELUDIUM grant (2017/25/N/ST4/02440) of the 
NCN in Poland is gratefully acknowledged.

[1] M.Warren, J. Chem. Eur. 2014,20,5468-5477.
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Experimental observation of Jahn-Teller distortions in 
π-conjugated high symmetry systems: C60

n- and [MPc]n- 

anions

Alexey Kuzmin1, A. Krylova1, M. Faraonov2, A. Fatalov2 
1Inst. of Solid State Physics of Russian Academy of Sciences, Chernogolovka, 
Russian Federation 
2Inst. of Problems of Chemical Physics of Russian Academy of Sciences, 
Chernogolovka, Russian Federation

The theory of Jahn-Teller (J-T) effect has concluded that a degenerate electronic 
state of a high symmetry system is unstable to any deformations. The reduced 
forms of fullerene (C60) and metal phthalocyanine (MPc) are subject to J-T 
distortions due to extra electrons on the degenerated LUMO levels. The distortion 
removes the degeneracy of this orbital and splits it into several levels with slightly 
different energies. 
The original J-T theorem does not say which distortions is the most preferable and 
does not give any estimation of their magnitudes. Ab initio and DFT calculations 
show that low symmetry conformers are placed very close to each other on a 
potential energy surface, so the question regarding which of them is realized in 
real crystals is complicated. 
The vast majority of works on this issue contains the theoretical study of isolated 
ions with optimized geometry; however, it takes place only in a gas phase. In order 
to find the experimental evidence of such effects, we have analyzed the structural 
data for the bunch of molecular and ionic complexes based on fullerenes and 
phthalocyanines. Most of the structures were obtained in our group during 
last four years. A complete geometry analysis of the molecular cage of C60

n- and 
[MPc]n- depending on their negative charge n was proposed. It has been found 
that the Pc reduction affects the molecular structure of metal phthalocyanine 
radical anions and leads to the alternation of short and long C-N bonds in the 
heterocycle and destroys D4h symmetry of the molecule. In the case of C60

n- the 
molecular shape was approximated by the principal ellipsoid, and the distortion 
was analyzed by comparing the axes lengths. The way of LUMO splitting depends 
on distortion parameters. EPR and UV-vis spectroscopy was used to confirm the 
results based on X-ray atomic structure analysis.

This work was partially supported by RFBR according to the research project № 
18-33-00731.
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Synthesis and crystal structure of new alkaline-
chalcogenido-manganates

Michael Langenmaier, C. Röhr 
Inst. für Anorganische und Analytische Chemie, Albert-Ludwigs-
Universität, Freiburg, Germany

Until now alkali-rich chalcogenido-metallates A6MQ4 [1-5] 
(M=Mn/Fe/Co/Zn; Q=S/Se/Te) are only known for the lighter 

alkali elements Na and K. These ortho salts with isolated [TMQ4]
6- tetrahedra 

crystallize in the Na6ZnO4-type structure [5]. 
The new compounds Rb6MnS4, Rb6MnSe4, Rb6MnTe4, Cs6MnS4, Cs6MnSe4 and 
Cs6MnTe4 were obtained during the systematic studies on the crystal chemistry of 
chalcogenido manganates [6]. 
All compounds are isotypic and crystallize in the hexagonal spacegroup P63mc, 
with lattice parameters from a=1021.9(7) and c=796.2(5) pm (Rb6MnS4) to 
a=1173.3(7) and c=906.3(5) pm (Cs6MnTe4). The crystal structure, which was 
determined by means of X-ray single crystal diffraction, contains two A, one 
Mn and two Q sites. The Q atoms form a hexagonal close-packing with slightly 
undulated hexagonal layers due to Q(1) being slightly out of the plane.The Mn(II) 
ions are located in nearly ideal Q-tetrahedra and occupy 1/8 of the vacancies. 
These isolated tetrahedra are the key characteristic of the structure and are 
uniformly oriented along [001]. The A(1) ions take 3/8 of tetrahedral intersticies 
and share three common edges with the aforementioned [MnQ4] tetrahedra. 
The second type of A+ ions are octahedrally coordinated by six Q2- anions. These 
octahedra share common edges with themselves as well as common faces with 
both kinds of tetrahedra. The remaining 1/4 of octahedra voids remain empty and 
are connected via common faces, thus forming channels along the c axis.

[1] K. Klepp, W. Bronger, Rev. Chim. Miner., 20, 682 (1983). 
[2] K. Klepp, W. Bronger, Z. Naturforsch. 38b, 12 (1983). 
[3] W. Bronger, H. Balk-Hardtdegen, Z. Anorg. Allg. Chem., 574, 89 (1989). 
[4] W. Bronger, H. Balk-Hardtdegen, U. Ruschewitz, Z. Anorg. Allg. Chem., 616,14 (1992). 
[5] P. Kastner, R. Hoppe, Z. Anorg. Allg. Chem., 409, 69 (1974). 
[6] M. Langenmaier, C. Röhr, Z. Kristallogr. Suppl. 37, 113 (2017).
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Quantitative and qualitative analysis of hydrogen bonds and 
interaction energies in proteins

Suman Kumar Mandal1, B. Guillot2, P. Munshi1 
1Chemical and Biological Crystallography Lab, Dept of Chemistry, Shiv 
Nadar Univ., Gautam Buddha Nagar, Uttar Pradesh, India 
2Laboratoire de Cristallographie, Inst. Jean Barriol, Univ. de Lorraine, Nancy, 
France

The function of a protein is defined by its structure and it is 
well perceived that the folding of proteins to its 3D structure occurs due to the 
burial of hydrophobic side chains and the formation of main-chain N-H•••O=C 
hydrogen bonds (HB). Although there is a debate on the predominating factor 
for the folding process, recent studies direct towards the electrostatic HB 
interactions.1 In globular proteins, N-H•••O=C contacts, formed between the 
main chain N-H and C=O groups,  are the building block of α-helices and 
β-sheets. It is expected that the accurate information of such interactions in 
proteins will help in proper modeling and prediction of binding energies. Given 
the recent developments in macromolecular crystallography and with the rise 
of quantum crystallography concept,2 it is encouraging to study electrostatic 
HB interactions using experimentally derived electron densities. Research on 
protein charge density analysis has recently been stimulated particularly with 
the interest in the topological analysis of HBs, protein-ligand interactions and 
their electrostatics.3 In this study, we have modeled charge densities (ELMAM-24 
based), of several high-resolution X-ray protein structures as deposited in the PDB 
and performed topological analysis followed by electrostatic interaction energy 
estimation. Further, the topologies of the HBs are visualized5 and the interaction 
energies (E) are quantified. The topological properties thus obtained are found 
to correlate well among themselves as well as with the E. Finally, this systematic 
study demonstrated that the N-H•••O=C hydrogen bonds in proteins follow the 
same trend as those studied in case of small molecules.6

1. Rose et.al., 2006 PNAS, 103, 16623 
2. Grabowsky et.al., 2017 Chem Sci, 8, 4159 
3. Liebschner et.al., 2011 J Phy Chem. A, 115, 12895 
4. Domagala et.al., 2012 Acta Cryst A, 68, 337 
5. Saleh et.al., 2013 J Appl Cryst, 46, 1513 
6. Mallinson et.al. 2003 JACS, 125, 4259; Munshi & Row 2006 Cryst Eng Comm, 7, 608
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Theoretical and experimental studies of conformational 
changes induced by intermolecular interactions in various 
crystals of 5-benzofurazancarboxylic acid

Paulina H. Marek1,2, I. Madura1 
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2The Faculty Laboratory of Advanced Crystal Engineering, Faculty of 
Chemistry, Univ. of Warsaw, Warsaw, Poland

One of the computational ways to support crystal engineering are crystal 
structure prediction methods. It can be particularly useful in predicting 
structures of labile molecules. However, these methods are extremely time-
consuming, therefore, simple methods allowing initial estimation of the most 
energy preferable conformations of the molecule are being sought. The aim of 
the research was to propose a simplified approach of assessing the most preferred 
angular ranges of spatial alignment of carboxylic groups in dicarboxylic acids. 
Performed predictions were followed by comparison of the results with the 
data available in the CSD crystallographic database. The method confirmed 
that rough calculations conducted in gas phase could be used to determine 
energetically preferred molecular geometries. What more, it was concluded that 
by modification of chemical environment of a given molecule in crystal, one 
can influence its conformation. In the next step, proposed method was used to 
estimate energy values in molecules of asymmetric monocarboxylic acids. The 
results indicated that it would be theoretically possible to observe both acid 
conformers in the crystalline state. Basing on the calculation results, a number 
of multi-component systems with 5-benzofurazancarboxylic acid was designed. 
The role of the second component was to modify the chemical environment of the 
acid molecule, thereby inducing conformational pseudopolymorphism. Structures 
were examined by X-ray diffraction methods. Hirshfeld surface analysis along 
with graph theory were used to describe intermolecular interactions of obtained 
structures. Results of this studies can be used as a starting point for analysis of 
the conformational polymorphism phenomenon in the structures of asymmetric 
monocarboxylic acids.
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Unprecedent stepwise investigation of guest loading in highly 
flexible MOF pores by crystalline sponge method

Paolo P. Mazzeo1,2, D. Balestri1, C. Carraro1, P. Pelagatti1, 
N. Demitri3, A. Bacchi1,2 
1Univ. of Parma, Parma, Italy 
2Centro Interdipartimentale Biopharmanet-TEC, Parma, Italy 
3Sincrotrone Elettra, Trieste, Italy

MOFs are known to be highly versatile materials made by connecting metallic 
nodes characterized by a given coordination geometry with multidentate 
rigid ligands acting as spacers, hence affording three-dimensional network 
connectivity. The accurate design of the building units allows to obtain porous 
MOFs with cavities of considerable size which usually accommodate loosely 
bound solvent molecules. Starting from the pioneer concept recently developed of 
crystalline-sponge method[1] in which the authors focused their attention on the 
structural determination of single guest molecules trapped into a microporous 
framework, we here propose a systematic way to embed small molecular 
aggregates inside home-made porous crystalline materials, with the multiple 
aims of exploring both the structural aspects of nanoconfinement and the 
stabilization of guest molecules inside the cavities of the structure. The challenge 
of this idea stands in the possibility to neatly “freeze”, within a crystal, ordered 
supramolecular clusters of molecules that would form a liquid in their natural 
state at ambient conditions, and visualize their supramolecular aggregation, at 
different loading time. In particular, we here propose an unprecedent stepwise 
characterization of the evolution of the guest loading process by soaking the MOF 
crystals for different time into the pure liquid guest and sequentially investigate 
them via SCXRD. The guest we focused on is Eugenol, which is a volatile phenolic 
constituent of clove essential oil obtained from Eugenia caryophyllata buds 
and leaves. It is a functional ingredient of numerous products which have been 
used in the pharmaceutical, agro-food and cosmetic industry. The wide range of 
eugenol activities derived from it antimicrobial, anti-inflammatory, analgesic and 
antioxidant properties.
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Switching from quasi-2D to 3D Heisenberg antiferromagnets 
in {[Cu(pyz)2X]BF4}n with X=Cl and Br

Fabio Montisci1, R. Scatena1, A. Lanza1,2, N. Casati3, P. Macchi1 
1Dept for Chemistry and Biochemistry, Univ. of Bern, Switzerland 
2Center for Nanotechnology Innovation, Italian Inst. of Technology, Pisa, Italy 
3Swiss Light Source, Paul Scherrer Inst., Villigen, Switzerland

The design and control of materials with quasi-low dimensional 
antiferromagnetic Heisenberg interactions is desirable for relevant applications in 
spintronics. {[Cu(pyz)2X]BF4}n are excellent models to investigate low dimensional 
systems because of their localized spin-1/2 moments and large charge gap. We 
studied these samples both experimentally and with periodic DFT calculations, 
determining the electron density distribution through high resolution single 
crystal X-ray diffraction and probing structural and electronic changes trough 
application of high pressure. 
The analysis of the electron and spin density distribution, as well as their 
correlation with magnetic properties, was employed to describe the super-
exchange mechanism. Moreover, models using restricted multipoles were refined 
against the high pressure X-ray diffraction data and analyzed with QTAIM. 
The species shows remarkable stability of the magnetic network up to quite 
high pressure (above 10 GPa). The experimentally observed antiferromagnetic 
coupling can be explained by the super-exchange coupling mediated by pyrazine 
linkers. However, the exchange through pyrazine results to be modulated by 
the interaction with the apical linker X, which at increased pressures acquires 
relevance and transforms the magnetic network from quasi-2D to 3D. 
The results of this study suggest that systematic electron density analysis on 
transition metal compounds could lead to a better understanding of the super-
exchange mechanism.
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1Dept Earth and Einviromental Sciences, Pavia Univ., Pavia, Italy 
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Natural and synthetic Ag-sulfosalts are interesting compounds because of 
their distinctive physical and chemical properties, such as ionic conductivity. 
Sulfosalts are characterized by some of the most complicated atomic and crystal 
structures known in themineral kingdom. Among them, argyrodites (Am+

(12-

n-y)/mBn+X2-
6-yZ

-
y) show a complex behaviour as a function of temperature, and 

superionic conductivity is often found to be associated with the high-temperature 
modification. The high mobility of the monovalent cations (i.e., Cu and Ag) is 
often responsible of the strong structural disorder of the respective ions. We 
recently determined the crystal structure of a previously unknown natural Ag-
bearing sulfosalt, Ag8(As3+

0.5As5+
0.5)S6, which was named spryite (Bindi et al.2017). 

The mineral exhibits a crystallographic peculiarity: the position usually occupied 
by Ge in argyrodite corresponds to two partially-occupied sites in spryite. The 
first position has a tetrahedral environment, while the second has a trigonal 
pyramidal coordination. Consequently, As5+ has been thought mixed with Ge4+ 
at the first position, whereas As3+ to be hosted in the other position. Thus, As3+ 
and As5+ coexist in spryite, that represents the first As3+-bearing member of 
the argyrodite group. The presence of the partially occupied As3+S3 pyramids 
seems to inhibit the formation of the “quasi-liquid-like”structure that is usually 
associated to high temperature polymorphs and fast ion conductors. Accordingly, 
no phase transitions were detected in the high-temperature X-ray diffraction 
experiments. Density functional theory calculations were performed to obtain 
more information about the electronic structure.

References 
Bindi, Luca and Keutsch, Frank N and Morana, Marta and Zaccarini, Federica 
Zaccarini (2017) Spryite,Ag8(As3+

0.5As5+
0.5)S6:structure determination and inferred absence of 

superionic conduction of the first As3+-bearing argyrodite, Physics and 
Chemistry of Minerals
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Hirshfeld atom refinement for an organo-gold(I) compound
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Relativistic effects in chemistry manifest themselves in many 
ways and influence various physical and chemical properties 

of materials. The well-known macroscopic examples are: the yellow colour of 
gold1 and the low melting point of mercury1. The relativistic effects appear when 
the speed of electrons approaches the speed of light1 and for valence shell they 
increase like Z2. They manifest themselves in three major aspects2: (1) the radial 
contraction and decrease of energy of the s and p shells, (2) the spin-orbit splitting 
and the radial expansion and (3) increase of the energy of upper d and f shells. 
Single crystal X-ray diffraction provides information about the electron 
distribution in molecules, which can be modelled with the Hansen-Coppens 
formalism3(MM). Unfortunately, the MM is hardly flexible enough for heavy 
atoms. An alternative method is the X-ray Wavefunction Refinement (XWR)4 
which consists of two steps: Hirshfeld Atom Refinement (HAR) and XCW fitting. 
According to Bucinsky et al.5 it is possible to perform relativistic XWR, and thus, 
relativistic, as well as electron correlation effects, can be described. 
Here we present the results of HAR carried out for an organo-gold(I) compound 
against Mo data collected at 100 K, with the resolution limited to 0.6 Å. The 
outcome of DFT-based refinements with the nonrelativistic (NR) and quasi-
relativistic (IOTC) approach and a few combinations of double-zeta basis sets and 
will be compared.

References: 
1. Pyykko, P. Chem. Rev. 1988, 88 (3), 563–594. 
2. Yatsimirskii, K. B. Theor. Exp. Chem. 1995, 31 (3), 153–168. 
3. Hansen, N. K.; Coppens, P. Acta Crystallogr. Sect. A 1978, 34 (6), 909–921. 
4. Woińska, M.; Jayatilaka, D.; Dittrich, B.; Flaig, R.; Luger, P.; Woźniak, K.; Dominiak, P. M.; 
Grabowsky, S. ChemPhysChem 2017, 18 (23), 3334–3351. 
5. Bučinský, L.; Jayatilaka, D.; Grabowsky, S. J. Phys. Chem. A 2016, 120 (33), 6650–6669.
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Overcoming distrust in solid state simulations: the case of 
cell parameters

Francesca Peccati1, R. Laplaza1,2, J. Contreras-García1 

1Sorbonne Univ., CNRS, Laboratoire de Chimie Théorique, Paris, France 
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X-ray and neutron diffraction are well-established techniques 
for structural determination, whose success allowed the 
development of materials science. These methods are able, among other things, 
to provide fundamental quantities such as the values of cell parameters of 
crystals with an uncertainty as small as some parts in 104-105. At the same time, 
simulation techniques are providing with each passing day a deeper insight into 
the structure and properties of materials. Ideally, from now on simulation and 
experiment will walk hand in hand, sharing goals and fields of study. An obstacle 
to this cooperation is the common lack of a degree of uncertainty associated 
with data that are the product of computation. Without an appropriate error bar, 
direct comparison of the calculated value with the corresponding experimental 
quantity can lack physical significance. In this contribution we focus on the 
most basic property of a solid, the geometry of its unit cell, and employ the 
known delocalization error of DFT and HF methods to develop a simple and 
robust procedure to quickly estimate the error bar associated to calculated cell 
parameters. We suggest that this method should be added to the standard toolkit 
of solid state simulations as its validity has been proven to extend over several 
classes of crystals (ionic, covalent, molecular).



262 Erice International School of Crystallography • 52nd Course, 1-10 June 2018

POSTER 32 QC

Metal-Organic Framework (MOF) as a platform for 
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  5Center for Research Excellence in Nanotechnology, King Fahd Univ. of   
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Single-crystal X-ray diffraction analysis is a powerful technique to determine the 
spatial arrangement of molecules within crystal structures, but in many cases 
crystallization is hard to achieve for flexible structures, reactive species, and 
impure mixtures. To overcome this challenge, in 2016, a new approach termed 
coordinative alignment method was reported, where the guest molecules are 
coordinatively attached to the backbone of a chiral metal-organic framework 
(MOF) to align them into an ordered pattern suitable for crystal structure 
determination. The structure of the host framework, MOF-520, is constructed 
from Al8(OH)8(HCOO)4(-COO)4 secondary building units (SBUs). Within these 
SBUs four bridging formate groups can be replaced with molecules containing 
either carboxylates, primary alcohols, phenols and vicinal diols. It has been 
demonstrated to be a potentially useful tool for solving structures of unknown 
molecules: sixteen molecules containing these four functional groups, ranging 
in complexity from methanol to plant hormones (gibberellins, containing eight 
stereocenters), were successfully crystallized and had their precise structure 
determined. However, the method limited to only a few specific functional 
groups. To address this problem, we aim to expand the scope of functional 
groups that can be used in the coordinative alignment method. Specifically, the 
following groups functional groups were investigated in this project: (i) pyrazolate 
and its analogues, (ii) sulfate/sulfonate/sulfinate, (iii) phosphate/phosphonate/
phosphinate. All of these functional groups can be anchored to the Al-based SBU 
of MOF-520, and the structure-unknown molecules with these functionalities 
are incorporated and their structures are studied. Detailed insight into the 
selectivity of chiral incorporation encourage us to analyze the asymmetric orbital 
arrangement in the chiral extended framework.
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Electronic properties and bonding in azolate based 
coordination polymers
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Materials having dielectric constant lower then silicon dioxide 
(≈ 4) as interlayer insulators in modern microelectronic devices are nowadays 
necessary to guarantee high performance and low power consumption.  In order 
to reach lower and lower dielectric constants the research moved to porous 
materials, in particular to Metal Organic-Frameworks (MOFs), which are 
probably the most promising systems as next-generation insulators. However, 
mechanical and thermal stability up to 400 °C is demanded for the application 
in electronic devices. In this regard, Metal Azolate Frameworks (MAFs) are 
chemically and thermally more stable then classic systems based on carboxylic 
ligands and are indeed more suitable to overcome stability challenges. In order to 
verify and quantify the performances of azolate based MOFs for their use as low 
dielectric constant materials, we investigated the Cu4L4∙2EtOH (L=5-(4-pyridyl)
tetrazolate) system. Susceptibility and dielectric constant of the evacuated MOF 
were obtained using Crystal14 code, polarizability with and without solvent 
interactions were computed via DFT calculation in gas-phase. Theoretical 
analysis were supported by high resolution x-ray diffraction experiment and using 
Hansen&Coppens multipolar model. 
Moreover, the decoration of L with one fluorine atom (LF=5-(2-fluoro-4-pyridyl)
tetrazolate) produced two new isostructural coordination polymer with coinage 
metal cations: AgLF and CuLF. Chemical behavior under pressure of both porous 
(Cu4L4∙2EtOH) and not-porous (AgLF, CuLF) coordination polymers was studied. 
In the first case interlayer connections were induced as consequence of the 
extension of coordination character of the ligand, meanwhile in the second case 
the formation of an argentophilic interaction was observed, but not a cuprophilic 
one. Topological analysis were carried out with TOPOND package implemented 
in Crysta14, energy decomposition analysis were computed in gas-phase with 
EDA and IQA methods.
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electron density approach?

Katarzyna Rzęsikowska, J. Kalinowska-Tłuścik1, A. Krawczuk1 
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Predicting the selectivity profile of molecules acting on 
monoamine G-protein coupled receptors (GPCRs) is a critical 

issue in psychiatric drug design. However, the task is very complicated and still 
little is known about pharmacodynamic properties of psychoactive molecules 
which could allow selective binding to chosen target. 5-HT1A and 5-HT7 receptors 
are one of the most studied subtypes of serotonin receptors in the central nervous 
system. They play an important role in functioning of human body (e.g. circadian 
rhythm, cognition or emotions). On the molecular basis, activation of these 
GPCRs release an opposite effect on adenylyl cyclase function. Despite knowledge 
of the putative binding modes and large number of known ligands of 5-HT1AR 
and 5-HT7R, drugs currently used in therapies related to serotoninergic system 
dysfunction are, in most cases, not selective. They usually influence various 
monoamine targets, affecting level of other neurotransmitters, e.g. dopamine. 
In our research, an attempt to correlate the ligand’s electron density distribution 
with predicted active geometry of small molecules inside the receptor’s binding 
site was performed. This investigation has been undertaken in order to find the 
explanation of selectivity phenomenon of the studied ligand-receptor systems. 
For this purpose compounds with confirmed affinity to 5-HT1A and 5-HT7 
receptors were selected form ChEMBL database (ver. 22.1). Homology models 
of 5-HT1A and 5-HT7 receptors were constructed with MODELLER (9.14) 
software, using the X-ray structure of β2-adrenergic receptor (PDB ID:2RH1) 
as a template. The obtained models has been evaluated using virtual screening 
approach. Docking study (GOLD ver. 5.4.0) for selected ligands was performed, 
followed by calculation of topological and energetic properties of the electron 
density distribution at geometries from docking poses. This approach was applied 
in order to define differences in the binding modes and selective ligand properties.
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Experimental charge density studies of short strong 
hydrogen bonds (SSHBs) with potential proton migration 
behaviour on I19, Diamond Light Source

Lucy K. Saunders1, C.S. Frampton2, H. Nowell1, D.R. Allan1 
1Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK 
2Wolfson Centre for Materials Chemistry, Brunel Univ. London, Uxbridge, UK

Short strong hydrogen bonds (SSHBs) are those with very short 
donor-acceptor distances in the range of 2.5 Å for O—H∙∙∙O HBs1 and 2.6 Å 
for N—H∙∙∙O HBs.2 The short donor-acceptor distances perturbate properties 
of molecules in the solid state3 resulting in interesting physical or chemical 
behaviour including ferroelectrics4 or thermochromism.5,6 This behaviour occurs 
where the short donor-acceptor distance results in a potential energy surface 
where the barrier to proton transfer is low.7 In this situation, the hydrogen atom 
may transfer across the SSHB, typically from the donor to the acceptor or into a 
more central position.8,9 
In this work, we use experimental charge density studies to characterise SSHBs 
in potential temperature dependent proton migration materials with the aim 
of increasing our understanding of where such behaviour may be manifest. 
We present results from multipolar refinements (performed in XD200610 using 
Hansen and Coppens formulism11) of charge density data collected on a number 
of systems on beamline I19, Diamond Light Source (UK). We also discuss aspects 
of the data collection strategy implemented to obtain the quality high resolution 
data required for charge density analysis.

1. P. Gilli, et al., J. Am. Chem. Soc., 1994, 116, 909-915. 
2. T. Steiner, I. Majerz and C. C. Wilson, Angew. Chem. Int. Ed., 2001, 40, 2651-2654. 
3. F. Fontaine-Vive et al., J. Am. Chem. Soc., 2006, 128, 2963-2969. 
4. S. Horiuchi and Y. Tokura, Nat. Mater., 2008, 7, 357. 
5. D. M. S. Martins et al., J. Am. Chem. Soc., 2009, 131, 3884-3893. 
6. C. L. Jones, C. C. Wilson and L. H. Thomas, CrystEngComm, 2014, 16, 5849-5858. 
7. C. L. Perrin, Acc. Chem. Res., 2010, 43, 1550-1557. 
8. A. O. F. Jones et al., Cryst. Growth Des., 2013, 13, 497-509. 
9. J. A. Cowan, J. A. K. Howard, G. J. McIntyre, S. M. F. Lo and I. D. Williams, Acta Crystallogr. 
Sect. B, 2005, 61, 724-730. 
10. A. Volkov et al., XD2006, 2006. 
11. N. K. Hansen and P. Coppens, Acta Crystallogr. Sect. A, 1978, 34, 909-921.
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Electron density and dielectric properties of highly porous 
MOFs
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Porous metal organic frameworks (MOFs) have been addressed 
as promising next generation low dielectric constant (εr) 
materials1. The strategy to reach values lower than εr 2.5 

consists in the partial replacement of dense material with the lowest possible εr 
contribution, which is air or vacuum2. The investigation of structure/property 
relationship allows rational selection and design of operating materials among the 
virtually infinite plethora of MOFs3,4. Our approach consists in the correlation 
between electron density distribution of isostructural MOFs and their dielectric 
properties, both computed and measured. The selected materials are [Cu3(BTC)2], 
also known as Hkust-1, and [Zn3(BTC)2] which present a 3D system of pores 
accounting for 69 % of the volume5,6. We have determined the electron density 
distribution from single crystals with various degrees of pores activation. 
Furthermore, quantum mechanical simulations have been used to rationalize 
the networks polarization induced by guest molecules. The derived bonding 
properties have been correlated to atomic and functional group polarizabilities. By 
measuring the dielectric constant over a wide range of frequencies for differently 
activated samples, it has been possible to show the role of pores morphology 
and content. This study has highlighted the main factors which tune dielectric 
properties in highly porous materials and reports, to the best of our knowledge, 
the first comparison between calculated and experimental εr of MOFs.

1. Usman, M., et al., ChemElectroChem 2, 786–788 (2015) 
2. Zagorodniy, K., et al., Appl. Phys. Lett. 97, 2013–2015 (2010) 
3. Yaghi, O. M., et al., Nature 423, 705–714 (2003) 
4. Wang, Z., et al., Chem. Soc. Rev. 38, 1315-1329 (2009) 
5. Wu, Y., et al., Angew. Chemie - Int. Ed. 47, 8929–8932 (2008) 
6. Feldblyum, J. I., et al., J. Am. Chem. Soc. 133, 18257–18263 (2011)
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Structural phase transition in iron borate HoFe3(BO3)4
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1Shubnikov Inst. of Crystallography of FSRC “Crystallography and 
Photonics” RAS, Moscow, Russia 
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A number of phase transitions was discovered in HoFe3(BO3)4 
compound which belong to a multiferroic family RFe3(BO3)4. Magnetic ordering is 
observed below 38 K and spin-reorientation take place at about 5 K [1]. There is a 
structural phase transition sp. gr. R32→P3121 in HoFe3(BO3)4 at 427 K according 
to DTA data for powder samples [2] and at 360 K according to high-resolution 
spectroscopy for single crystals grown with Bi2Mo3O12 in a flux [3]. 
In the present work HoFe3(BO3)4 single crystals grown with Bi2Mo3O12 in a flux 
were studied by X-ray diffraction analysis in a temperature range 11–500 K. 
X-ray diffraction measurements were performed using synchrotron radiation at 
PILATUS@SNBL diffractometer and using a laboratory diffractometer Xcalibur 
CCD (Oxford Diffraction). The chemical composition of the compound was 
verified by X-ray energy-dispersive elemental analysis. 
Bi atoms from the flux were discovered in the structure. According to X-ray 
diffraction and energy-dispersive elemental analysis, Bi atoms partly occupy about 
5% of Ho atomic position. The temperature dependence of unit cell parameters 
a,b demonstrates a sharp decrease at about 365-370 K with temperature lowering, 
which responds to the structural phase transition. An analysis of reflections 
forbidden in high-temperature sp. gr. R32 showed that the number and intensity 
of such reflections increase sharply below 365 K, which allowed us to consider 
Ts=365 К. Crystal structure of HoFe3(BO3)4 was refined for several data sets at 
temperatures 90–500 K. With temperature lowering a non-uniform change in the 
bond lengths is observed in the Ho(Bi)O6 prisms, B2O3 and B3O3 triangles, and 
FeO6 octahedra.

The study was partly supported by the RFBR (pr.no. 17-02-00766 А).

1. C. Ritter et al. / J. Phys.: Condens. Matter 20 (2008) 365209 (9pp) 
2. Y. Hinatsu et al. / Journal of Solid State Chemistry 172 (2003) 438–445 
3. D. A. Erofeev et al. / Optics and Spectroscopy 120, No. 4 (2016), pp. 558–565



269Erice International School of Crystallography • 52nd Course, 1-10 June 2018

POSTER 39 QC 
“rising star”

Electron densities of organic molecular crystals from powder 
X-ray diffraction
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Detailed knowledge of the nature of the chemical bonding is 
a prerequisite for understanding the physical and chemical 
properties of materials and this information is best available 
in the electron density (ED). Virtually all experimental ED distributions are 
determined from structure factors extracted from single crystal X-ray diffraction, 
since this has been regarded the optimal way to obtain data of the highest quality. 
However, our recent work has shown that data obtained from powder X-ray 
diffraction (PXRD) can exceed the data quality from single crystal diffraction1-4. 
At the same time PXRD is experimentally less demanding and time-consuming5. 
 
I aim to determine ED distributions and atomic displacement parameters 
(ADPs) of molecular materials from highly accurate PXRD data using Hirshfeld 
Atom Refinement (HAR) and multipole modelling. HAR is similar to other 
refinement methods with the crucial difference that the atomic scattering factors 
are obtained from aspherical atom partitioning from an ab initio quantum 
mechanical model6. In this way, it is possible to obtain more precise molecular 
geometries and ADPs than possible from conventional refinement methods7. The 
better model will lead to more accurate intensity extraction, which can also be 
used in a subsequent full ED refinement using the multipole method. This is of 
critical importance if the PXRD method to obtain EDs is to be extended from 
small unit cell inorganic solids to molecular crystals with severe peak overlap.
1 N. Bindzus et al. (2014), Acta Cryst. A70, 39-48 
2 T. Straasø et al. (2014), J. Synchrotron Rad., 21, 119-126 
3 N. Wahlberg et al. (2015), J. Phys. Chem. C, 119, 6164-6173 
4 K.Tolborg et al. (2017), Acta Cryst. B73, 521-530. 
5 M. R. V. Jørgensen et al. (2014), IUCrJ, 1, 267-280 
6 S. C. Capelli et al. (2014), IUCrJ, 1, 361-379 
7M. Fugel et al. (2018), IUCRJ, 5, 32-44
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Application of HAR to incomplete, high pressure data
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Despite the rapid development of hardware, software and 
methods utilised in the field of quantum crystallography, high-
pressure (HP) diffraction experiments remain a very challenging 
subject in terms of precise electron density reconstruction. 

Diamond Anvil Cells (DACs) used to pressurise the sample heavily limit 
an accessible volume of reciprocal space, causing the reflection data to be 
systematically incomplete. A Fourier transform performed over a limited “disc” 
of reflection data results in a charge topology being heavily distorted, rendering 
multiple standard modelling methods inapplicable. 
 
Hirschfeld Atom Refinement (HAR) is a relatively new refinement technique 
implemented in Tonto software, which allows one to precisely retrieve as much 
structural information as possible from a single X-ray diffraction experiment. 
Recent research by Woińska et al. show that HAR is capable of precise and 
accurate hydrogen atom position and displacement characterisation even for 
data trimmed to a low resolution. Based on this fact, preliminary calculations 
on artificially de-completed datasets for α-glycine and 1-phenyl-5-(1’-pyrene)-
pyrazole (both crystallising in monoclinic system, space group P21/n) have been 
performed. Although HAR requires supposedly very redundant and complete 
data, the refinements against heavily trimmed reflection sets, trunctuated both 
randomly and systematically, have been successful. While a meticulous analysis of 
output models is still due, they feature reasonable hydrogen atom behaviour and 
are outwardly indistinguishable from respective references. 
 
Hirschfeld Atom Refinement is unlikely to consistently yield models suitable 
for reliable topological analysis based on HP data collected on low-symmetry 
systems. It does, however, appear to be a promising alternative to the constrains-
supported Independent Atom Model.

This study was financially supported by the Polish National Science Centre (NCN) 
based on decision UMO-2015/17/B/ST4/04216.
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Theoretical and experimental studies for the determination 
of the molecular Electron Density (ED) of crystalline organic 
compounds, mainly of compounds with pharmaceutical activity, have recently 
drawn the attention in the area of small-molecule crystallography and 
pharmaceutical science.1 In that vein, here we report a crystal engineering study 
and Charge Density Analysis (CDA) of a salt of Lamivudine (3TC), one of the well 
marketed and successful Nucleoside Reverse Transcriptase Inhibitors (NRTI). 
This study aimed to assess, from the viewpoint of the molecular electron density 
distribution, the physicochemical stability and the supramolecular properties 
of the nitric acid salt derivative (anhydride Lamivudine nitrate, 3TCH-NO3) 
since the 3TC active pharmaceutical ingredient used in the market has stability 
problems in the manufacturing process.2,3 
Experimental CDA was determined by high resolution X-ray diffraction data 
(sinθmax/λMo≈1.2 Å-1) through multipolar refinement based on the Hansen-
Coppens formalism, and it is compared with a model obtained by refinement 
of theoretical structure factors calculated by periodic theoretical calculations 
at the B3LYP/6-311G* level of theory. Features of the molecular conformation, 
topological analysis by quantum theory of atoms in molecules (QTAIM), 
supramolecular behavior and physicochemical stability of this new solid form 
are assessed and correlated with the CD distribution. Therefore, we aim to shed 
light on the pharmaceutical properties of a new solid form of the 3TC drug by a 
combination of crystal engineering and CD studies, which is a new approach in 
the analysis of a pharmaceutical compound.

1. Krawczuk, A. & Macchi, P. (2014). Chemistry Central Journal. 8:68. 
2. Martins, F. T. et al. (2012). J. Pharm. Sci. 101 (6), 2143−2154. 
3. Perumalla, S. R. & Sun, C. C. (2014). Cryst. Growth Des. 14 (8), 3990-3995.
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Charge densities from powder X-ray diffraction
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        5Niels Bohr Inst., Univ. of Copenhagen, Copenhagen, Denmark

Traditionally Single Crystal X-Ray Diffraction (SCXRD) is used to obtain 
structure factor amplitudes for Electron Density (ED) modelling in crystalline 
materials. However, for SCXRD there are important issues with extinction, 
absorption and scaling between detector frames. All three issues can be partially 
solved by performing Powder X-Ray Diffraction (PXRD). Two major issues are 
present in PXRD; peak overlap and background treatment. 
Recently, we have shown that PXRD can be a valuable alternative to SCXRD for 
ED determination in high symmetry inorganic materials, and subtle deformations 
in core ED have been determined for diamond, silicon and cubic boron nitride. 
For silicon and diamond, the extracted structure factors were shown to be of 
comparable precision and accuracy to the dynamical Pendellösung data [1,2]. This 
was made possible by performing diffraction in vacuum with the first version 
of our Aarhus Vacuum Imaging plate Diffractometer with a sample-to-detector 
distance of 300 mm. We have now finished commissioning of a new version of 
AVID with sample-to-detector distance increased to 1200 mm, which is shown to 
give a large improvement in signal-to-background ratio and peak broadening due 
to the differences in radial dependences of coherent and incoherent scattering [3]. 
Benchmark PXRD data on silicon has been collected on the new AVID with 
resolution up to sinθ/λ>2.0 Å-1. Data are modelled using a combined HC-Rietveld 
method, where overlapping reflections are partitioned based on the Hansen-
Coppens model, which reduces bias towards the independent atom model. 
The extracted structure factors are shown to be of improved precision and 
accuracy at high angles. These are used for modelling the ED in silicon including 
deformations in the core ED with improved accuracy compared to previous 
studies.

[1] Bindzus, N. et al. (2014). Acta Cryst. A70, 39-48 
[2] Wahlberg, N. et al. (2016). Acta Cryst. A72, 28-35 
[3] Tolborg, K. et al. (2017). Acta Cryst. B73, 521-530
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QTAIM theoretical studies on manganese(I), ruthenium(I), 
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1Dept Physical and Analytical Chemistry, Univ. Oviedo, Asturias, Spain 
2Dept Inorganic and Organic Chemistry, Univ. Oviedo, Asturias, Spain

In their transition-metal complexes, amine–boranes and 
aminoboranes use one or two of their BH groups to bind 
the metal atom (σ-complexes), implicating only the H atom (Shimoi-type 
coordination) or both B and H atoms (agostic-type coordination) of the B–H 
bond. Theoretical QTAIM gas-phase studies have shown that the attachment 
of the BH3 group to the metal atom in the octahedral complex [Mn(κ3N,H,H-
mapyBH3)(CO)3] (Hmapy = 2-(methylamino)pyridine) is symmetric, and it 
involves two B–H–M interactions that are intermediate between Shimoi and 
agostic types.1 The symmetric structure found for the above complex also 
supports the proposal that the asymmetric coordination found for the BH2 
fragment in the Ru complex [RuH(κ3N,H,H-mapyBH3)(CO)(PiPr3)] is not due 
to its octahedral coordination geometry, which is present in both Mn and Ru 
complexes, but to the different trans-influence of the hydride and phosphane 
ligands (which are trans to H atoms in the BH2 group). In the Ru complex, the 
attachment of both borane B–H bonds to the metal atom is also intermediate 
between those of Shimoi and agostic types, but the B–H bond trans to the hydride 
interacts more agostically with the metal atom than the B–H bond that is trans 
to the phosphane. Moreover, these results are complementary to those found on 
the trigonal bipyramidal complexes [M(κ3N,H,H-mapyBH3)(cod)] (M = Rh, Ir) 
(cod = cycloocta-1,5-diene) where the coordination of the BH2 fragment is also 
asymmetric in both, but not because it is influenced by the other ligands in these 
instances but because it occupies two equatorial coordination sites whose ideal 
coordination angle (120°) is too wide to efficiently accommodate the BH2 fragment 
in a symmetric manner.2

1J. Brugos, J. A. Cabeza, P. García-Álvarez, E. Pérez-Carreño, and J. F. Van der Maelen, Dalton. 
Trans., 2017, 46, 4009-4017. 
2J. Brugos, J. A. Cabeza, P. García-Álvarez, A. R. Kennedy, E. Pérez-Carreño, and J. F. Van der 
Maelen, Inorg. Chem., 2016, 55, 8905-8912.
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Electronegativity in band structure calculations

Alena Vishina, Martin Rahm 
Chalmers Univ. of Technology, Gothenburg, Sweden

Band structures in electron structure calculations are often too 
cumbersome to analyse. We are trying to simplify this analysis 
by looking for some easy-to-calculate descriptors that can be 
obtained from the band structures, such as electronegativity. We 

introduce and investigate the concept of elecronegativity resolved in reciprocal 
space by calculating it from the band structure for various materials such as 
metals, semiconductors, ionic solids, etc.
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On the compressibility of C-H bonds in late transition metal 
alkyls

Marcel Vöst, D. Schmitz, M. Kalter, W. Scherer 
Dept Physics, Augsburg Univ., Augsburg, Germany

For investigating the pressure dependency of C-H 
bonds in organometallic transition metal alkyls, the 
chlorotrimethylplatinum(IV)-complex [PtCl(CH3)3]4 (1) has 
been selected as a reference system to study the compressibility of organometallic 
M-C and C-H bonds while C-H bond activations by the proximity of the metal 
center are hindered. The cubic symmetry of 1 provides a virtually isotropic 
compression scenario and well-resolved, non-convoluted Raman spectra can be 
obtained over the studied pressure range of 0 to 4.9(1) GPa. Hence, the shift of 
the symmetric C-H stretching mode reveals pressure-dependent changes of the 
C-H bond strength and can be correlated with the according bond length. All 
normal modes of the Raman spectra could be assigned by employing theoretical 
frequencies based on DFT calculations of 1. At 4.9(1) GPa a significant blue shift 
of the symmetric C-H and Pt-C stretching mode can be observed in the Raman 
spectrum, indicating a shortening of the respective bond length. To monitor the 
unit cell compression and structural changes of 1, X-ray diffraction studies have 
been carried out in the pressure range of 0 to 4.9(1) GPa. The determined low bulk 
modulus k0 = 7.4(6) GPa of 1 results from a high intermolecular compressibility 
and strongly decreasing intramolecular metal-to-ligand distances (Pt-Cl). For 
the Pt-Cl bond the X-ray diffraction data reveal a significant reduction of the 
bond length up to 4.9(1) GPa. In contrast, the pressure dependency of the Pt-C 
bond suggests only a trend of a reducing bond length, wherein the changes stay 
within the estimated standard deviation. However, this trend is supported by the 
observed significant blue shift of the Pt-C stretching mode and symmetric C-H 
mode in the Raman spectrum, ruling out any C-H bond activation by agostic 
interactions.
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Monika Wanat1,2, M. Malińska2, K. Woźniak2 
1College of Inter-Faculty Individual Studies in Mathematics and Natural 
Sciences (MISMaP), Univ. of Warsaw, Warsaw, Poland 
2Biological and Chemical Research Centre, Chemistry Dept, Univ. of 
Warsaw, Warsaw, Poland

Commonly, in the case of routine X-ray data refinement, the 
Independent Atom Model (IAM) of electron density is used. Nonetheless, atoms 
are assumed to be neutral and spherical, a quantitative description of electron 
density distribution is not given. A far better model that allows for modelling of 
deformation of spherical charge density was introduced by Hansen and Coppens1 
and is called a pseudoatom model of electron density. Application of this model 
requires an excellent quality crystals and high resolution XRD data. Quite often, 
this is difficult to be fulfilled. Therefore, new methods have been developed that 
enable reconstruction of electron density i.e. Hirshfeld Atom Refinement (HAR)2 
or Transferable Aspherical Atom Model (TAAM)3. 
We will show that CuKα X-ray Diffraction Data could be refined with HAR or 
TAAM methods. HAR and TAAM refinements for model crystal structures using 
CuKα and MoKα X-ray Diffraction Data will be compared. Hydrogen atoms in 
these refinements were treated in various ways: isotropic, anisotropic or estimated 
using Shade. Additionally, for MoKα X-ray diffraction data, the multipole model 
and high order TAAM and HAR refinements will be presented. Obtained results 
will be shown in comparison with neutron diffraction data. Particularly, the ADPs 
analysis using Peanut show that ADPs of hydrogen atoms are better modelled 
using CuKα X-ray data. Moreover, analysis of geometry, fractal dimension plots 
and residual density maps will be shown.

References: 
(1) Hansen, N. K.; Coppens, P. Acta Crystallogr. A 1978, 34 (6), 909–921. 
(2) Capelli, S. C.; Bürgi, H.-B.; Dittrich, B.; Grabowsky, S.; Jayatilaka, D. IUCrJ 2014, 1 (5), 361–379. 
(3) Jarzembska, K. N.; Dominiak, P. M. Acta Crystallogr. A 2012, 68 (1), 139–147.
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Erna K. Wieduwilt1, L.A. Malaspina1, D. Duvinage1, M. Olaru1, 
A.J. Edwards2, J. Beckmann1, D. Jayatilaka3, S. Grabowksy1 
1Univ. of Bremen, Inst. of Inorganic Chemistry and Crystallography, Bremen, 
Germany 
2Australian Nuclear Science and Technology Organisation,  Lucas Heights, 
NSW, Australia 
3Univ. of Western Australia, School of Molecular Sciences, Perth, WA, Australia

The determination of hydrogen atom parameters from X-ray diffraction 
experiments is still a challenge because its X-ray scattering power is low and its 
single electron is shifted towards the bond. This makes a spherical atom approach 
inadequate for its description. Bonded to heavy atoms, hydrogen atoms are even 
more difficult to localize, as Fourier truncation ripples close to the heavy atom 
positions can hide the weak electron density maxima representing the hydrogen 
atoms. 
There are several ways how hydrogen atom positions can be treated in general 
within a structure refinement[1], out of which two are closer examined in this 
study: the Hirshfeld Atom Refinement[2] (HAR) and neutron diffraction. HAR 
can be performed using routine in-house X-ray data. A statistical validation of 
HAR has previously been performed on small organic molecules and shows 
good agreement between neutron and HAR element-hydrogen bond lengths[3]. 
An expansion to inorganic molecules has not been possible, since even for main-
group element E-H bonds there is an astonishing lack of accurate low-temperature 
neutron-diffraction data available in the literature[3]. 
This study has two main objectives: (i) acquiring neutron derived geometries 
to be used as reference values to validate the (ii) HAR for compounds involving 
H atoms next to heavy elements. We will present the results of the neutron 
diffraction experiments collected at the Bragg Institute of the Australian Nuclear 
Science and Technology Organisation (ANSTO) at the instrument KOALA 
using the Laue technique on compounds involving E-H bonds, as well as some 
preliminary results and challenges  encountered during the HAR on the same set 
of compounds.
[1]L. A. Malaspina et al. Cryst. Growth Des. 2017, 17, 3812-3825. 
[2]D. Jayatilaka, B. Dittrich, Acta Cryst. A 2008, 64, 383. S. C. Capelli et al. IUCrJ 2014, 1, 361-379. 
[3]M. Woinska et al. Sci. Adv. 2016, 2, e1600192.
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Quantitative and qualitative analysis of intermolecular 
interactions of multicomponent crystals containing 
sulfonamides

Joanna Wojnarska 
Dept Chemistry, Univ. Jagiellonian, Krakow, Poland

Crystalline materials with desired physical properties are of 
major interest in modern science and technology. For rational 

design of new crystal phases with prospective optical properties, specific building 
blocks need to be used. The chosen components should have large values of 
(hyper)polarizability and their mutual assembly needs to maximize (non)linear 
optical effects. Electron density (ED) analysis allows for accurate, quantitative 
investigation of intermolecular interactions, which are of great importance for 
identification of factors that promote particular packing of building blocks. 
When combined with qualitative tools as Hirshfeld Surfaces (HS)[1], Non-
Covalent Interaction analysis (NCI)[2], the full information about dispersive and 
directional interactions can be established. The obtained knowledge allows to 
identify reproducible synthons, which can be useful in crystal engineering of new 
functional materials. 
 
The designed multicomponent materials containing sulfanilamide: sulfanilamide 
sulfamic acid salt and sulfanilamide [(4-sulfamoylphenyl)carbamoyl]formic acid 
salt have been investigated to determine factors leading to the formation of a 
particular crystal structure. The intermolecular interactions have been carefully 
studied using electron density analysis and qualitative crystal engineering 
methods: HS and NCI index. The topology of ED have been explored by means 
of Quantum Theory of Atoms in Molecules (QTAIM)[3]. Experimental ED 
distribution have been compared with theoretically determined values obtained 
from periodic calculations. The results allowed to confirm the presence of 
hydrogen bonds with an intermediate character between closed shell and shared 
shell interactions. Additionally, the influence of dispersive interactions on the 
crystal structure formation was established.

[1] Spackman, M. A. et al. (2009) CrystEngComm 11, 19. 
[2] Contreas-Garcia, J. et al. (2011) J. Chem. Theory Comput. 7, 625. 
[3] Bader, R. (1994) Oxford University Press.
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N-oxide – N-oxide interactions and Cl…Cl halogen bonds in 
pentachloropyridine N-oxide: the many-body approach to 
interactions in the crystal state

Kinga Wzgarda-Raj1, A.J. Rybarczyk-Pirek1, M. Palusiak1, 
S. Wojtulewski2  

1Theoretical and Structural Chemistry Group, Dept of Physical Chemistry, 
Faculty of Chemistry, Univ. of Lodz, Lodz, Poland 
2Inst. of Chemistry, Univ. of Bialystok, Bialystok, Poland

Recently, an increased interest in pyridine N-oxide, due to their use. Pyridine 
N-oxides are components of antifungal, antiviral, anti-inflammatory and 
bacteriostatic substances, as well as being used as drugs for cancer chemotherapy 
[1-3]. 
Here, in the continuation of our research, we present the results of the synthesis 
of a new crystal stabilized by halogen bonds, pentachloropyridine N-oxide. The 
title compound, crystallizes in the monoclinic group P21/c with one molecule in a 
general position. 
In the crystal structure, molecules are linked by C - Cl…Cl halogen bonds into 
infinite ribbons extending along the crystallographic [100] direction. These 
molecular aggregates are further stabilized by very short intermolecular N-oxide 
– N-oxide interactions into herringbone motifs [4]. 
Computations based on quantum chemistry methods [5] allowed for a more 
detailed description of the N-oxide – N-oxide interactions and Cl…Cl halogen 
bonds. For this purpose, the many-body approach to interaction energy were 
applied.

Acknowledgments 
The authors acknowledge the financial support from National Science Centre of 
Poland (Grant No. 2015/19/ B/ST4/01773).  
The Oxford Diffraction SuperNova Dual diffractometer was funded by the EFRD in 
Operational Programme Development of Eastern Poland 2007-2013 via Project no: 
POPW.01.03.00-20-004/11.

References 
[1].W.A. Denny Curr. Med. Chem. Anti-Cancer Agents 2004 4, 395– 399. 
[2].J.R. Amsden, P.O. Gubbins, S. McConnell, E. Anaissie Antimicrob. Agents Chemother. 2013 
57, 3420–3423. 
[3].J.C. Villalobos-Rocha, L. Sánchez-Torres, B. Nogueda-Torres, A. Segura-Cabrera, C.A. Garcia-
Pèrez, V. Bocanegra-Garcia, I. Palos, A. Monge, G. Rivera Parasitol. Res. 2014 113, 2027–2035. 
[4].K. Wzgarda-Raj, A. J. Rybarczyk-Pirek, S. Wojtulewski, M. Palusiak Acta Cryst. 2018, C74, 113-119. 
[5]. M. J. Frisch et al. 2009 GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.



280 Erice International School of Crystallography • 52nd Course, 1-10 June 2018

POSTER 50 QC

Designer triazole-based naphthalimide ligands as 
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crystallography
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1Dept of Chemistry, Univ. of Southampton, Southampton, UK 
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The numerous interesting properties of spin crossover (SCO) active materials, 
combined with the current trend to develop molecular electronics and machines, 
has resulted in a dramatic increase in the exploration compounds exhibiting these 
properties in the last few years. Increasing solid-state interactions between metal 
complexes is essential for controlling the nature of the SCO event. One approach 
to achieve this is to use supramolecular chemistry to assemble complexes into 
ordered arrays through non-covalent interactions1.Some previous work has 
investigated the effect that hydrogen bonding and halogen bonding has on the 
cooperative nature of the SCO event. It is proposed that other supramolecular 
interactions can also alter the nature of this cooperativity and the focus of this 
work is on utilising π···π interactions to systematically modify the effect. 
1,2,4-Triazole-Naphthalimide-based ligands were identified as the target for this 
project because of: a) their inherent ability to induce SCO in Fe(II), b) the long 
range ordering achieved through π-stacking and c) the interesting photophysical 
properties of the 1,8-naphthalimide moiety. Moreover, metal binding sites can be 
easily incorporated, and the π-deficient naphthalimide is ideally suited for π···π 
stacking. 
While systematically varying the nature of substituents on the ligand backbone, 
we will use quantum crystallography methods to develop an understanding of 
how subtle changes in electron withdrawing/donating substituents influence the 
nature of interactions and accordingly how π interactions influence spin crossover 
properties. 
The calculation of intermolecular interaction energies has provided an array 
of information which provides insights that we wish to develop into detailed 
structure function relationships and thereby increase control over the behavious 
of spin crossover materials.

Reference 
1.Gutlich, P.; Goodwin, H. A., Spin Crossover in Transition Metal Compounds I 2004, 233, 1-47.
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